bell notificationshomepageloginedit profileclubsdmBox

Read Ebook: An Analysis of the Lever Escapement by Playtner H R

More about this book

Font size:

Background color:

Text color:

Add to tbrJar First Page Next Page Prev Page

Ebook has 69 lines and 20267 words, and 2 pages

George Savage, of London, England, invented this action. He was a watchmaker who, in the early part of this century, did much to perfect the lever escapement by good work and nice proportion, besides inventing the two pin variety. He spent the early part of his life in Clerkenwell, but in his old days emigrated to Canada, and founded a flourishing retail business in Montreal, where he died. Some of George Savage's descendants are still engaged at the trade in Canada at the present day.

The correct delineation of the lever escapement is a very important matter. We illustrate one which is so delineated that it can be practically produced. We have not noticed a draft of the lever escapement, especially with equidistant pallets and club teeth, which would act correctly in a watch.

A theorem is a proposition to be proved, not being able to prove it, we must simply change it according as our experience dictates, this is precisely what we have done with the escapement after having followed the deductions of recognized authorities with the result that we can now illustrate an escapement which has been thoroughly subjected to an impartial analysis in every respect, and which is theoretically and practically correct.

We will not only give instructions for drafting the escapement now under consideration, but will also make explanations how to draft it in different positions, also in circular pallet and single roller. We are convinced that by so doing we will do a service to many, we also wish to avoid what we may call "the stereotyped" process, that is, one which may be acquired by heart, but introduce any changes and perplexity is the result. It is really not a difficult matter to draft escapements in different positions, as an example will show.

Before making a draft we must know exactly what we wish to produce. It is well in drafting escapements to make them as large as possible, say thirty to forty times larger than in the watch, in the present case the size is immaterial, but we must have specifications for the proportions of the angles. Our draft is to be the most difficult subject in lever escapements; it is to be represented just as if it were working in a watch; it is to represent a good and reliable action in every respect, one which can be applied without special difficulty to a good watch, and is to be "up to date" in every particular and to contain the majority of the best points and conclusions reached in our analysis.

Radius of safety roller to be 4/7 of the theoretical impulse radius. The length of horn is to be such that the end would point at least to the center of the ruby pin when the edge of the crescent passes the dart; space between the end of horn and ruby pin is to be 1 1/2 ?.

It is well to know that the angles for width of teeth, pallets and drop are measured from the wheel center, while the lifting and locking angles are struck from the pallet center, the draw from the locking corners of the pallets, and the inclination of the teeth from the locking edge.

In the fork and roller action, the angle of motion, the width of slot, the ruby pin and its shake, the freedom between dart and roller, of ruby pin with acting edge of fork and end of horn are all measured from the pallet center, while the impulse angle and the crescent are measured from the balance center. A sensible drawing board measures 17 x 24 inches, we also require a set of good drawing instruments, the finer the instruments the better; pay special attention to the compasses, pens and protractor; add to this a straight ruler and set square.

The best all-round drawing paper, both for India ink and colored work has a rough surface; it must be fastened firmly and evenly to the board by means of thumb tacks; the lines must be light and made with a hard pencil. Use Higgins' India ink, which dries rapidly.

We will begin by drawing the center line A? A B; use the point B for the escape center; place the compass on it and strike G H, the primitive or geometrical circle of the escape wheel; set the center of the protractor at B and mark off an angle of 30? on each side of the line of centers; this will give us the angles A B E and A B F together, forming the angle F B E of 60?, which represents from lock to lock of the pallets. Since the chord of the angle of 60? is equal to the radius of the circle, this gives us an easy means of verifying this angle by placing the compass at the points of intersection of F B and E B with the primitive circle G H; this distance must be equal to the radius of the circle. At these points we will construct right angles to E B and F B, thus forming the tangents C A and D A to the primitive circle G H. These tangents meet on the line of centers at A, which will be the pallet center. Place the compass at A and draw the locking circle M N at the points of intersection of E B and F B with the primitive circle G H. The locking edges of the pallets will always stand on this circle no matter in what relation the pallets stand to the wheel. Place the center of the protractor at B and draw the angle of width of pallets of 6?; I B E being for the engaging and J B F for the disengaging pallet. In the equidistant pallet I B is drawn on the side towards the center, while J B is drawn further from the center. If we were drawing a circular pallet, one-half the width of pallets would be placed on each side of E B and F B. At the points of intersection of I B and J B with the primitive circle G H we draw the path O for the discharging edge of the engaging and P for that of the disengaging pallet. The total lock being 1 3/4 ?, we construct V? A at this angle from C A; the point of intersection of V? A with the locking circle M N, is the position of the locking corner of the engaging pallet. The pallet having 12? draw when locked we place the center of the protractor on this corner and draw the angle Q M E. Q M will be the locking face of the engaging pallet. If the face of the pallet were on the line E B there would be no draw, and if placed to the opposite side of E B the tooth would repel the pallet, forming what is known as the repellant escapement.

A number of years ago we constructed the escapement model which we herewith illustrate. All the parts are adjustable; the pallets can be moved in any direction, the draft angles can be changed at will. Through this model we can practically demonstrate the points of which we have spoken. Such a model can be made by workmen after studying these papers.

We will again proceed with the delineation of the escapement here illustrated. After having drawn the locking face Q M, we draw the angle of width of teeth of 4 1/2 ?, by planting the protractor on the escape center B. We measure the angle E B K, from the locking face of the pallet; the line E B does not touch the locking face of the pallet at the present time of contact with the tooth, therefore a line must be drawn from the point of contact to the center B. We did so in our drawing but do not illustrate it, as in a reduced engraving of this kind it would be too close to E B and would only cause confusion. We will now draw in the lifting angle of 3? for the tooth. From the tangent C A we draw T A at the required angle; at the point of intersection of T A with the 30? line E B we have the real circumference of the escape wheel. It will only be necessary to connect the locking edge of the tooth with the line K B, where the real or outer circle intersects it. It must be drawn in the same manner in the circular escapement; if the tooth were drawn up to the intersection of K B with T A, the lift would be too great, as that point is further from the center A than the points of contact are.

The space between the discharging edge P and the heel of the tooth forms the angle of drop J B I of 1 1/2 ?; the definition for drop is that it is the freedom for wheel and pallet. This is not, strictly speaking, perfectly correct, as, during the unlocking action there will be a recoil of the wheel to the extent of the draft angle; the heel of the tooth will therefore approach the edge P, and the discharging side of the pallet approaches the tooth, as only the discharging edge moves on the path P.

A good length for the teeth is 1/10 the diameter of the wheel, measured from the primitive diameter and from the locking edge of the tooth.

The backs of the teeth are hollowed out so as not to interfere with the pallets, and are given a nice form; likewise the rim and arms are drawn in as light and as neat as possible, consistent with strength.

Having explained the delineation of the wheel and pallet action we will now turn our attention to that of the fork and roller. We tried to explain these actions in such a manner that by the time we came to delineate them no difficulty would be found, as in our analysis we discussed the subject sufficiently to enable any one of ordinary intelligence to obtain a correct knowledge of them. The fork and roller action in straight line, right, or any other angle is delineated after the methods we are about to give.

We specified that the acting length of fork was to be equal to the center distance of wheel and pallets; this gives a fork of a fair length.

The radius of the safety roller was given as 4/7 of the theoretical impulse radius. They may be made of various proportions; thus 2/3 is often used. Remember that the smaller we make it, the less the friction during accidental contact with the guard pin, the greater must the passing hollow be and the horn of fork and guard point must be longer, which increases the weight of the fork.

We think the instructions given are ample to enable any one to master the subject. We may add that when one becomes well acquainted with the escapement, many of the angles radiating from a common center, may be drawn in at once. We had intended describing the mechanical construction of the escapement, which does unmistakably present some difficulties on account of the small dimensions of the parts, but nevertheless it can be mechanically executed true to the principles enumerated. We have evolved a method of so producing them that young men in a comparatively short period have made them from their drafts that their watches start off when run down the moment the crown is touched. Perhaps later on we will write up the subject. It is our intention of doing so, as we make use of such explanations in our regular work.

Add to tbrJar First Page Next Page Prev Page

 

Back to top