Read Ebook: Evolution in Modern Thought by Bateson William Contributor Bougl C Lestin Charles Alfred Contributor Bury J B John Bagnell Contributor Haeckel Ernst Contributor H Ffding Harald Contributor Morgan C Lloyd Conwy Lloyd Contributor Schwalbe Gustav Albert Contributor Thomson J Arthur John Ar
Font size:
Background color:
Text color:
Add to tbrJar First Page Next Page Prev Page
Ebook has 667 lines and 92481 words, and 14 pages
The idea of selection set forth by the two naturalists was at the time absolutely new, but it was also so simple that Huxley could say of it later, "How extremely stupid not to have thought of that." As Darwin was led to the general doctrine of descent, not through the labours of his predecessors in the early years of the century, but by his own observations, so it was in regard to the principle of selection. He was struck by the innumerable cases of adaptation, as, for instance, that of the woodpeckers and tree-frogs to climbing, or the hooks and feather-like appendages of seeds, which aid in the distribution of plants, and he said to himself that an explanation of adaptations was the first thing to be sought for in attempting to formulate a theory of evolution.
But how was it possible that such processes should occur in free nature? Who is here the breeder, making the selection, choosing out one individual to bring forth offspring and rejecting others? That was the problem that for a long time remained a riddle to him.
Darwin himself relates how illumination suddenly came to him. He had been reading, for his own pleasure, Malthus' book on Population, and, as he had long known from numerous observations, that every species gives rise to many more descendants than ever attain to maturity, and that, therefore, the greater number of the descendants of a species perish without reproducing, the idea came to him that the decision as to which member of a species was to perish and which was to attain to maturity and reproduction might not be a matter of chance, but might be determined by the constitution of the individuals themselves, according as they were more or less fitted for survival. With this idea the foundation of the theory of selection was laid.
Although a great number of the descendants of each generation fall victims to accident, among those that remain it is still the greater or less fitness of the organism that determines the "selection for breeding purposes," and it would be incomprehensible if, in this competition, it were not ultimately, that is, on an average, the best equipped which survive, in the sense of living long enough to reproduce.
The selection theory teaches us how this is conceivable, since it enables us to understand that there is a continual production of what is non-purposive as well as of what is purposive, but the purposive alone survives, while the non-purposive perishes in the very act of arising. This is the old wisdom taught long ago by Empedocles.
In recent years Bateson in particular has championed the idea of saltatory, or so-called discontinuous evolution, and has collected a number of cases in which more or less marked variations have suddenly appeared. These are taken for the most part from among domesticated animals which have been bred and crossed for a long time, and it is hardly to be wondered at that their much mixed and much influenced germ-plasm should, under certain conditions, give rise to remarkable phenomena, often indeed producing forms which are strongly suggestive of monstrosities, and which would undoubtedly not survive in free nature, unprotected by man. I should regard such cases as due to an intensified germinal selection--though this is to anticipate a little--and from this point of view it cannot be denied that they have a special interest. But they seem to me to have no significance as far as the transformation of species is concerned, if only because of the extreme rarity of their occurrence.
There are, however, many variations which have appeared in a sudden and saltatory manner, and some of these Darwin pointed out and discussed in detail: the copper beech, the weeping trees, the oak with "fern-like leaves," certain garden-flowers, etc. But none of them have persisted in free nature, or evolved into permanent types.
Thus we come to the conclusion that Darwin was right in regarding transformations as taking place by minute steps, which, if useful, are augmented in the course of innumerable generations, because their possessors more frequently survive in the struggle for existence.
The Peridineae of the warmer ocean layers have thus become long-rayed, those of the colder layers short-rayed, not through the direct effect of friction on the protoplasm, but through processes of selection, which favoured the longer rays in warm water, since they kept the organism afloat, while those with short rays sank and were eliminated. If we put the question as to selection-value in this case, and ask how great the variations in the length of processes must be in order to possess selection-value; what can we answer except that these variations must have been minimal, and yet sufficient to prevent too rapid sinking and consequent elimination? Yet this very case would give the ideal opportunity for a mathematical calculation of the minimal selection-value, although of course it is not feasible from lack of data to carry out the actual calculation.
But even in organisms of more than microscopic size there must frequently be minute, even microscopic differences which set going the process of selection, and regulate its progress to the highest possible perfection.
We have, however, to make still greater demands on variation, for it is not enough that the necessary variation should occur in isolated individuals, because in that case there would be small prospect of its being preserved, notwithstanding its utility. Darwin at first believed, that even single variations might lead to transformation of the species, but later he became convinced that this was impossible, at least without the co?peration of other factors, such as isolation and sexual selection.
All the Holothurians or sea-cucumbers have in the skin calcereous bodies of different forms, usually thick and irregular, which make the skin tough and resistant. In a small group of them--the species of Synapta--the calcareous bodies occur in the form of delicate anchors of microscopic size. Up till 1897 these anchors, like many other delicate microscopic structures, were regarded as curiosities, as natural marvels. But a Swedish observer, Oestergren, has recently shown that they have a biological significance: they serve the footless Synapta as auxiliary organs of locomotion, since, when the body swells up in the act of creeping, they press firmly with their tips, which are embedded in the skin, against the substratum on which the animal creeps, and thus prevent slipping backwards. In other Holothurians this slipping is made impossible by the fixing of the tube-feet. The anchors act automatically, sinking their tips towards the ground when the corresponding part of the body thickens, and returning to the original position at an angle of 45 degrees to the upper surface when the part becomes thin again. The arms of the anchor do not lie in the same plane as the shaft, and thus the curve of the arms forms the outermost part of the anchor, and offers no further resistance to the gliding of the animal. Every detail of the anchor, the curved portion, the little teeth at the head, the arms, etc., can be interpreted in the most beautiful way, above all the form of the anchor itself, for the two arms prevent it from swaying round to the side. The position of the anchors, too, is definite and significant; they lie obliquely to the longitudinal axis of the animal, and therefore they act alike whether the animal is creeping backwards or forwards. Moreover, the tips would pierce through the skin if the anchors lay in the longitudinal direction. Synapta burrows in the sand; it first pushes in the thin anterior end, and thickens this again, thus enlarging the hole, then the anterior tentacles displace more sand, the body is worked in a little farther, and the process begins anew. In the first act the anchors are passive, but they begin to take an active share in the forward movement when the body is contracted again. Frequently the animal retains only the posterior end buried in the sand, and then the anchors keep it in position, and make rapid withdrawal possible.
Darwin pointed out that one of the essential differences between artificial and natural selection lies in the fact that the former can modify only a few characters, usually only one at a time, while Nature preserves in the struggle for existence all the variations of a species, at the same time and in a purely mechanical way, if they possess selection-value.
Spencer's main object was to substantiate the validity of the Lamarckian principle, the co?peration of which with selection had been doubted by many. And it does seem as though this principle, if it operates in nature at all, offers a ready and simple explanation of all such secondary variations. Not only muscles, but nerves, bones, sinews, in short all tissues which function actively, increase in strength in proportion as they are used, and conversely they decrease when the claims on them diminish. All the parts, therefore, which depend on the part that varied first, as for instance the enlarged antlers of the Irish Elk, must have been increased or decreased in strength, in exact proportion to the claims made upon them,--just as is actually the case.
The problem of coadaptation is no easier in the case of the ant than in the case of the Giant Stag. Darwin himself gave a pretty illustration to show how imposing the difference between the two kinds of workers in one species would seem if we translated it into human terms. In regard to the Driver ants we must picture to ourselves a piece of work, "for instance the building of a house, being carried on by two kinds of workers, of which one group was five feet four inches high, the other sixteen feet high."
The impetus in all directions given by Darwin through his theory of selection has been an immeasurable one, and its influence is still felt. It falls within the province of the historian of science to enumerate all the ideas which, in the last quarter of the nineteenth century, grew out of Darwin's theories, in the endeavour to penetrate more deeply into the problem of the evolution of the organic world. Within the narrow limits to which this paper is restricted, I cannot attempt to discuss any of these.
One of the chief preliminary postulates of sexual selection is the unequal number of individuals in the two sexes, for if every male immediately finds his mate there can be no competition for the possession of the female. Darwin has shown that, for the most part, the inequality between the sexes is due simply to the fact that there are more males than females, and therefore the males must take some pains to secure a mate. But the inequality does not always depend on the numerical preponderance of the males, it is often due to polygamy; for, if one male claims several females, the number of females in proportion to the rest of the males will be reduced. Since it is almost always the males that are the wooers, we must expect to find the occurrence of secondary sexual characters chiefly among them, and to find it especially frequent in polygamous species. And this is actually the case.
If we were to try to guess--without knowing the facts--what means the male animals make use of to overcome their rivals in the struggle for the possession of the female, we might name many kinds of means, but it would be difficult to suggest any which is not actually employed in some animal group of other. I begin with the mere difference in strength, through which the male of many animals is so sharply distinguished from the female, as, for instance, the lion, walrus, "sea-elephant," and others. Among these the males fight violently for the possession of the female, who falls to the victor in the combat. In this simple case no one can doubt the operation of selection, and there is just as little room for doubt as to the selection-value of the initial stages of the variation. Differences in bodily strength are apparent even among human beings, although in their case the struggle for the possession of the female is no longer decided by bodily strength alone.
Combats between male animals are often violent and obstinate, and the employment of the natural weapons of the species in this way has led to perfecting of these, e.g. the tusks of the boar, the antlers of the stag, and the enormous, antler-like jaws of the stag-beetle. Here again it is impossible to doubt that variations in these organs presented themselves, and that these were considerable enough to be decisive in combat, and so to lead to the improvement of the weapon.
We must briefly consider the clasping or grasping organs which have developed in the males among many lower Crustaceans, but here natural selection plays its part along with sexual selection, for the union of the sexes is an indispensable condition for the maintenance of the species, and as Darwin himself pointed out, in many cases the two forms of selection merge into each other. This fact has always seemed to me to be a proof of natural selection, for, in regard to sexual selection, it is quite obvious that the victory of the best-equipped could have brought about the improvement only of the organs concerned, the factors in the struggle, such as the eye and the olfactory organ.
There are many pretty little problems to be solved in this connection, for there are insects, such as some flies, that are attracted by smells which are unpleasant to us, like those from decaying flesh and carrion. But there are also certain flowers, some orchids for instance, which give forth no very agreeable odour, but one which is to us repulsive and disgusting; and we should therefore expect that the males of such insects would give off a smell unpleasant to us, but there is no case known to me in which this has been demonstrated.
In cases such as we have discussed, it is obvious that there is no possible explanation except through selection. This brings us to the last kind of secondary sexual characters, and the one in regard to which doubt has been most frequently expressed,--decorative colours and decorative forms, the brilliant plumage of the male pheasant, the humming-birds, and the bird of Paradise, as well as the bright colours of many species of butterfly, from the beautiful blue of our little Lycaenidae to the magnificent azure of the large Morphinae of Brazil. In a great many cases, though not by any means in all, the male butterflies are "more beautiful" than the females, and in the Tropics in particular they shine and glow in the most superb colours. I really see no reason why we should doubt the power of sexual selection, and I myself stand wholly on Darwin's side. Even though we certainly cannot assume that the females exercise a conscious choice of the "handsomest" mate, and deliberate like the judges in a court of justice over the perfections of their wooers, we have no reason to doubt that distinctive forms , and colours have a particularly exciting effect upon the female, just as certain odours have among animals of so many different groups, including the butterflies. The doubts which existed for a considerable time, as a result of fallacious experiments, as to whether the colours of flowers really had any influence in attracting butterflies have now been set at rest through a series of more careful investigations; we now know that the colours of flowers are there on account of the butterflies, as Sprengel first showed, and that the blossoms of Phanerogams are selected in relation to them, as Darwin pointed out.
Certainly it is not possible to bring forward any convincing proof of the origin of decorative colours through sexual selection, but there are many weighty arguments in favour of it, and these form a body of presumptive evidence so strong that it almost amounts to certainty.
Isolation of the group of individuals which is in process of varying is undoubtedly of great value in sexual selection, for even a solitary conspicuous variation will become dominant much sooner in a small isolated colony, than among a large number of members of a species.
If we survey the wealth of phenomena presented to us by secondary sexual characters, we can hardly fail to be convinced of the truth of the principle of sexual selection. And certainly no one who has accepted natural selection should reject sexual selection, for, not only do the two processes rest upon the same basis, but they merge into one another, so that it is often impossible to say how much of a particular character depends on one and how much on the other form of selection.
The same thing is true in regard to natural selection. It is not possible to bring forward any actual proof of the selection-value of the initial stages, and the stages in the increase of variations, as has been already shown. But the selection-value of a finished adaptation can in many cases be statistically determined. Cesnola and Poulton have made valuable experiments in this direction. The former attached forty-five individuals of the green, and sixty-five of the brown variety of the praying mantis , by a silk thread to plants, and watched them for seven days. The insects which were on a surface of a colour Similar to their own remained uneaten, while twenty-five green insects on brown parts of plants had all disappeared in eleven days.
But the deceptive resemblance may be caused in quite a different manner. I have often speculated as to what advantage the brilliant white C could give to the otherwise dusky-coloured "Comma butterfly" . Poulton's recent observations have shown that this represents the imitation of a crack such as is often seen in dry leaves, and is very conspicuous because the light shines through it.
The utility obviously lies in presenting to the bird the very familiar picture of a broken leaf with a clear shining slit, and we may conclude, from the imitation of such small details, that the birds are very sharp observers and that the smallest deviation from the usual arrests their attention and incites them to closer investigation. It is obvious that such detailed--we might almost say such subtle--deceptive resemblances could only have come about in the course of long ages through the acquirement from time to time of something new which heightened the already existing resemblance.
In face of facts like these there can be no question of chance and no one has succeeded so far in finding any other explanation to replace that by selection. For the rest, the apparent leaves are by no means perfect copies of a leaf; many of them only represent the torn or broken piece, or the half or two-thirds of a leaf, but then the leaves themselves frequently do not present themselves to the eye as a whole, but partially concealed among other leaves. Even those butterflies which, like the species of Kallima and Anaea, represent the whole of a leaf with stalk, ribs, apex, and the whole breadth, are not actual copies which would satisfy a botanist; there is often much wanting. In Kallima the lateral ribs of the leaf are never all included in the markings; there are only two or three on the left side and at more four or five on the right, and in many individuals these are rather obscure, while in others they are comparatively distinct. This furnishes us with fresh evidence in favour of their origin through processes of selection, for a botanically perfect picture could not arise in this way; there could only be a fixing of such details as heightened the deceptive resemblance.
Our postulate of origin through selection also enables us to understand why the leaf-imitation is on the lower surface of the wing in the diurnal Lepidoptera, and on the upper surface in the nocturnal forms, corresponding to the attitude of the wings in the resting position of the two groups.
The strongest of all proofs of the theory, however, is afforded by cases of true "mimicry," those adaptations discovered by Bates in 1861, consisting in the imitation of one species by another, which becomes more and more like its model. The model is always a species that enjoys some special protection from enemies, whether because it is unpleasant to taste, or because it is in some way dangerous.
It is chiefly among insects and especially among butterflies that we find the greatest number of such cases. Several of these have been minutely studied and every detail has been investigated so that it is difficult to understand how there can still be disbelief in regard to them. If the many and exact observations which have been carefully collected and critically discussed for instance by Poulton were thoroughly studied the arguments which are still frequently urged against mimicry would be found untenable; we can hardly hope to find more convincing proof of the actuality of the processes of selection than these cases put into our hands. The preliminary postulates of the theory of mimicry have been disputed, for instance, that diurnal butterflies are persecuted and eaten by birds, but observations specially directed towards this point in India, Africa, America and Europe have placed it beyond all doubt. If it were necessary I could myself furnish an account of my own observations on this point.
It remains to be said that in Madagascar a butterfly,
A seemingly irreconcilable contradiction to the mimicry theory is presented in the following cases, which were known to Bates, who, however, never succeeded in bringing them into line with the principle of mimicry.
In addition to the mimicry-rings first observed in South America, others have been described from Tropical India by Moore, and by Poulton and Dixey from Africa, and we may expect to learn many more interesting facts in this connection. Here again the preliminary postulates of the theory are satisfied. And how much more that would lead to the same conclusion might be added!
It may, perhaps, be objected that such external influences are often of a compelling power, and that every animal must submit to them, and that thus selection has no choice and can neither select nor reject. There may be such cases; let us assume for instance that the effect of the cold of the Arctic regions was to make all the mammals become black; the result would be that they would all be eliminated by selection, and that no mammals would be able to live there at all. But in most cases a certain percentage of animals resists these strong influences, and thus selection secures a foothold on which to work, eliminating the unfavourable variation, and establishing a useful colouring, consistent with what is required for the maintenance of the species.
The case is the same with all structural variations of animal parts, which are not absolutely insignificant. When the insects acquired wings they must also have acquired the mechanism with which to move them--the musculature, and the nervous apparatus necessary for its automatic regulation. All instincts depend upon compound reflex mechanisms and are just as indispensable as the parts they have to set in motion, and all may have arisen through processes of selection if the reasons which I have elsewhere given for this view are correct.
Thus there is no lack of adaptations within the organism, and particularly in its most important and complicated parts, so that we may say that there is no actively functional organ that has not undergone a process of adaptation relative to its function and the requirements of the organism. Not only is every gland structurally adapted, down to the very minutest histological details, to its function, but the function is equally minutely adapted to the needs of the body. Every cell in the mucous lining of the intestine is exactly regulated in its relation to the different nutritive substances, and behaves in quite a different way towards the fats, and towards nitrogenous substances, or peptones.
I have elsewhere called attention to the many adaptations of the whale to the surrounding medium, and have pointed out--what has long been known, but is not universally admitted, even now--that in it a great number of important organs have been transformed in adaptation to the peculiar conditions of aquatic life, although the ancestors of the whale must have lived, like other hair-covered mammals, on land. I cited a number of these transformations--the fish-like form of the body, the hairlessness of the skin, the transformation of the fore-limbs to fins, the disappearance of the hind-limbs and the development of a tail fin, the layer of blubber under the skin, which affords the protection from cold necessary to a warm-blooded animal, the disappearance of the ear-muscles and the auditory passages, the displacement of the external nares to the forehead for the greater security of the breathing-hole during the brief appearance at the surface, and certain remarkable changes in the respiratory and circulatory organs which enable the animal to remain for a long time under water. I might have added many more, for the list of adaptations in the whale to aquatic life is by no means exhausted; they are found in the histological structure and in the minutest combinations in the nervous system. For it is obvious that a tail-fin must be used in quite a different way from a tail, which serves as a fly-brush in hoofed animals, or as an aid to springing in the kangaroo or as a climbing organ; it will require quite different reflex-mechanisms and nerve combinations in the motor centres.
But--it will be objected--the substance of which the feather consists, this peculiar kind of horny substance, did not first arise through selection in the course of the evolution of the birds, for it formed the covering of the scales of their reptilian ancestors. It is quite true that a similar substance covered the scales of the Reptiles, but why should it not have arisen among them through selection? Or in what other way could it have arisen, since scales are also passively useful parts? It is true that if we are only to call adaptation what has been acquired by the species we happen to be considering, there would remain a great deal that could not be referred to selection; but we are postulating an evolution which has stretched back through aeons, and in the course of which innumerable adaptations took place, which had not merely ephemeral persistence in a genus, a family or a class, but which was continued into whole Phyla of animals, with continual fresh adaptations to the special conditions of each species, family, or class, yet with persistence of the fundamental elements. Thus the feather, once acquired, persisted in all birds, and the vertebral column, once gained by adaptation in the lowest forms, has persisted in all the Vertebrates from Amphioxus upwards, although with constant readaptation to the conditions of each particular group. Thus everything we can see in animals is adaptation, whether of to-day, or of yesterday, or of ages long gone by; every kind of cell, whether glandular, muscular, nervous, epidermic, or skeletal, is adapted to absolutely definite and specific functions, and every organ which is composed of these different kinds of cells contains them in the proper proportions, and in the particular arrangement which best serves the function of the organ; it is thus adapted to its function.
FOOTNOTES:
HEREDITY AND VARIATION IN MODERN LIGHTS
BY W. BATESON, M.A., F.R.S.
Darwin's work has the property of greatness in that it may be admired from more aspects than one. For some the perception of the principle of Natural Selection stands out as his most wonderful achievement to which all the rest is subordinate. Others, among whom I would range myself, look up to him rather as the first who plainly distinguished, collected, and comprehensively studied that new class of evidence from which hereafter a true understanding of the process of Evolution may be developed. We each prefer our own standpoint of admiration; but I think that it will be in their wider aspect that his labours will most command the veneration of posterity.
A treatise written to advance knowledge may be read in two moods. The reader may keep his mind passive, willing merely to receive the impress of the writer's thought; or he may read with his attention strained and alert, asking at every instant how the new knowledge can be used in a further advance, watching continually for fresh footholds by which to climb higher still. Of Shelley it has been said that he was a poet for poets: so Darwin was a naturalist for naturalists. It is when his writings are used in the critical and more exacting spirit with which we test the outfit for our own enterprise that we learn their full value and strength. Whether we glance back and compare his performance with the efforts of his predecessors, or look forward along the course which modern research is disclosing, we shall honour most in him not the rounded merit of finite accomplishment, but the creative power by which he inaugurated a line of discovery endless in variety and extension. Let us attempt thus to see his work in true perspective between the past from which it grew, and the present which is its consequence. Darwin attacked the problem of Evolution by reference to facts of three classes: Variation; Heredity; Natural Selection. His work was not as the laity suppose, a sudden and unheralded revelation, but the first fruit of a long and hitherto barren controversy. The occurrence of variation from type, and the hereditary transmission of such variation had of course been long familiar to practical men, and inferences as to the possible bearing of those phenomena on the nature of specific difference had been from time to time drawn by naturalists. Maupertuis, for example, wrote: "Ce qui nous reste ? examiner, c'est comment d'un seul individu, il a pu na?tre tant d'esp?ces si diff?rentes." And again: "La Nature contient le fonds de toutes ces vari?t?s: mais le hasard ou l'art les mettent en oeuvre. C'est ainsi que ceux dont l'industrie s'applique ? satisfaire le go?t des curieux, sont, pour ainsi dire, cr?ateurs d'esp?ces nouvelles."
Such passages, of which many can be found in eighteenth century writers, indicate a true perception of the mode of Evolution. The speculations hinted at by Buffon, developed by Erasmus Darwin, and independently proclaimed above all by Lamarck, gave to the doctrine of descent a wide renown. The uniformitarian teaching which Lyell deduced from geological observation had gained acceptance. The facts of geographical distribution had been shown to be obviously inconsistent with the Mosaic legend. Prichard, and Lawrence, following the example of Blumenbach, had successfully demonstrated that the races of Man could be regarded as different forms of one species, contrary to the opinion up till then received. These treatises all begin, it is true, with a profound obeisance to the sons of Noah, but that performed, they continue on strictly modern lines. The question of the mutability of species was thus prominently raised.
Why, then, was it, that Darwin succeeded where the rest had failed? The cause of that success was twofold. First, and obviously, in the principle of Natural Selection he had a suggestion which would work. It might not go the whole way, but it was true as far as it went. Evolution could thus in great measure be fairly represented as a consequence of demonstrable processes. Darwin seldom endangers the mechanism he devised by putting on it strains much greater than it can bear. He at least was under no illusion as to the omnipotence of Selection; and he introduces none of the forced pleading which in recent years has threatened to discredit that principle.
"But as my conclusions have lately been much misrepresented, and it has been stated that I attribute the modification of species exclusively to natural selection, I may be permitted to remark that in the first edition of this work, and subsequently, I placed in a most conspicuous position--namely, at the close of the Introduction--the following words: 'I am convinced that natural selection has been the main but not the exclusive means of modification.'"
But apart from the invention of this reasonable hypothesis, which may well, as Huxley estimated, "be the guide of biological and psychological speculation for the next three or four generations," Darwin made a more significant and imperishable contribution. Not for a few generations, but through all ages he should be remembered as the first who showed clearly that the problems of Heredity and Variation are soluble by observation, and laid down the course by which we must proceed to their solution. The moment of inspiration did not come with the reading of Malthus, but with the opening of the "first note-book on Transmutation of Species." Evolution is a process of Variation and Heredity. The older writers, though they had some vague idea that it must be so, did not study Variation and Heredity. Darwin did, and so begat not a theory, but a science.
The extent to which this is true, the scientific world is only beginning to realise. So little was the fact appreciated in Darwin's own time that the success of his writings was followed by an almost total cessation of work in that special field. Of the causes which led to these remarkable consequences I have spoken elsewhere. They proceeded from circumstances peculiar to the time; but whatever the causes there is no doubt that this statement of the result is historically exact, and those who make it their business to collect facts elucidating the physiology of Heredity and Variation are well aware that they will find little to reward their quest in the leading scientific Journals of the Darwinian epoch.
And yet in all else that concerns biological science this period was, in very truth, our Golden Age, when the natural history of the earth was explored as never before; morphology and embryology were exhaustively ransacked; the physiology of plants and animals began to rival chemistry and physics in precision of method and in the rapidity of its advances; and the foundations of pathology were laid.
Add to tbrJar First Page Next Page Prev Page