bell notificationshomepageloginedit profileclubsdmBox

Read Ebook: The Formation of Vegetable Mould Through the Action of Worms With Observations on Their Habits by Darwin Charles

More about this book

Font size:

Background color:

Text color:

Add to tbrJar First Page Next Page Prev Page

Ebook has 315 lines and 67340 words, and 7 pages

The leaves of a foreign plant were next searched for, the blades of which were not more pointed towards the apex than towards the base. This proved to be the case with those of a laburnum for on doubling the terminal over the basal half, they generally fitted exactly; and when there was any difference, the basal half was a little the narrower. It might, therefore, have been expected that an almost equal number of these leaves would have been drawn in by the tip and base, or a slight excess in favour of the latter. But of 73 leaves pulled out of worm-burrows, 63 per cent. had been drawn in by the tip; 27 per cent. by the base, and 10 per cent. transversely. We here see that a far larger proportion, viz., 27 per cent. were drawn in by the base than in the case of lime leaves, the blades of which are very broad at the base, and of which only 4 per cent. had thus been drawn in. We may perhaps account for the fact of a still larger proportion of the laburnum leaves not having been drawn in by the base, by worms having acquired the habit of generally drawing in leaves by their tips and thus avoiding the foot-stalk. For the basal margin of the blade in many kinds of leaves forms a large angle with the foot-stalk; and if such a leaf were drawn in by the foot-stalk, the basal margin would come abruptly into contact with the ground on each side of the burrow, and would render the drawing in of the leaf very difficult.

Nevertheless worms break through their habit of avoiding the foot-stalk, if this part offers them the most convenient means for drawing leaves into their burrows. The leaves of the endless hybridised varieties of the Rhododendron vary much in shape; some are narrowest towards the base and others towards the apex. After they have fallen off, the blade on each side of the midrib often becomes curled up while drying, sometimes along the whole length, sometimes chiefly at the base, sometimes towards the apex. Out of 28 fallen leaves on one bed of peat in my garden, no less than 23 were narrower in the basal quarter than in the terminal quarter of their length; and this narrowness was chiefly due to the curling in of the margins. Out of 36 fallen leaves on another bed, in which different varieties of the Rhododendron grew, only 17 were narrower towards the base than towards the apex. My son William, who first called my attention to this case, picked up 237 fallen leaves in his garden and of these 65 per cent. could have been drawn by worms into their burrows more easily by the base or foot-stalk than by the tip; and this was partly due to the shape of the leaf and in a less degree to the curling in of the margins: 27 per cent. could have been drawn in more easily by the tip than by the base: and 8 per cent. with about equal ease by either end. The shape of a fallen leaf ought to be judged of before one end has been drawn into a burrow, for after this has happened, the free end, whether it be the base or apex, will dry more quickly than the end imbedded in the damp ground; and the exposed margins of the free end will consequently tend to become more curled inwards than they were when the leaf was first seized by the worm. My son found 91 leaves which had been dragged by worms into their burrows, though not to a great depth; of these 66 per cent. had been drawn in by the base or foot-stalk; and 34 per cent. by the tip. In this case, therefore, the worms judged with a considerable degree of correctness how best to draw the withered leaves of this foreign plant into their burrows; notwithstanding that they had to depart from their usual habit of avoiding the foot-stalk.

This difficulty led my son Francis and myself to observe worms in confinement during several nights by the aid of a dim light, while they dragged the leaves of the above named pines into their burrows. They moved the anterior extremities of their bodies about the leaves, and on several occasions when they touched the sharp end of a needle they withdrew suddenly as if pricked. But I doubt whether they were hurt, for they are indifferent to very sharp objects, and will swallow even rose-thorns and small splinters of glass. It may also be doubted, whether the sharp ends of the needles serve to tell them that this is the wrong end to seize; for the points were cut off many leaves for a length of about one inch, and fifty-seven of them thus treated were drawn into the burrows by their bases, and not one by the cut-off ends. The worms in confinement often seized the needles near the middle and drew them towards the mouths of their burrows; and one worm tried in a senseless manner to drag them into the burrow by bending them. They sometimes collected many more leaves over the mouths of their burrows than could enter them. On other occasions, however, they behaved very differently; for as soon as they touched the base of a pine-leaf, this was seized, being sometimes completely engulfed in their mouths, or a point very near the base was seized, and the leaf was then quickly dragged or rather jerked into their burrows. It appeared both to my son and myself as if the worms instantly perceived as soon as they had seized a leaf in the proper manner. Nine such cases were observed, but in one of them the worm failed to drag the leaf into its burrow, as it was entangled by other leaves lying near. In another case a leaf stood nearly upright with the points of the needles partly inserted into a burrow, but how placed there was not seen; and then the worm reared itself up and seized the base, which was dragged into the mouth of the burrow by bowing the whole leaf. On the other hand, after a worm had seized the base of a leaf, this was on two occasions relinquished from some unknown motive.

As already remarked, the habit of plugging up the mouths of the burrows with various objects, is no doubt instinctive in worms; and a very young one, born in one of my pots, dragged for some little distance a Scotch-fir leaf, one needle of which was as long and almost as thick as its own body. No species of pine is endemic in this part of England, it is therefore incredible that the proper manner of dragging pine-leaves into the burrows can be instinctive with our worms. But as the worms on which the above observations were made, were dug up beneath or near some pines, which had been planted there about forty years, it was desirable to prove that their actions were not instinctive. Accordingly, pine-leaves were scattered on the ground in places far removed from any pine-tree, and 90 of them were drawn into the burrows by their bases. Only two were drawn in by the tips of the needles, and these were not real exceptions, as one was drawn in for a very short distance, and the two needles of the other cohered. Other pine-leaves were given to worms kept in pots in a warm room, and here the result was different; for out of 42 leaves drawn into the burrows, no less than 16 were drawn in by the tips of the needles. These worms, however, worked in a careless or slovenly manner; for the leaves were often drawn in to only a small depth; sometimes they were merely heaped over the mouths of the burrows, and sometimes none were drawn in. I believe that this carelessness may be accounted for either by the warmth of the air, or by its dampness, as the pots were covered by glass plates; the worms consequently did not care about plugging up their holes effectually. Pots tenanted by worms and covered with a net which allowed the free entrance of air, were left out of doors for several nights, and now 72 leaves were all properly drawn in by their bases.

The fallen petioles of our native ash-tree were next observed, and the rule with most objects, viz., that a large majority are dragged into the burrows by the more pointed end, had not here been followed; and this fact much surprised me at first. These petioles vary in length from 5 to 8 1/2 inches; they are thick and fleshy towards the base, whence they taper gently towards the apex, which is a little enlarged and truncated where the terminal leaflet had been originally attached. Under some ash-trees growing in a grass-field, 229 petioles were pulled out of worm burrows early in January, and of these 51.5 per cent. had been drawn in by the base, and 48.5 per cent. by the apex. This anomaly was however readily explained as soon as the thick basal part was examined; for in 78 out of 103 petioles, this part had been gnawed by worms, just above the horse-shoe shaped articulation. In most cases there could be no mistake about the gnawing; for ungnawed petioles which were examined after being exposed to the weather for eight additional weeks had not become more disintegrated or decayed near the base than elsewhere. It is thus evident that the thick basal end of the petiole is drawn in not solely for the sake of plugging up the mouths of the burrows, but as food. Even the narrow truncated tips of some few petioles had been gnawed; and this was the case in 6 out of 37 which were examined for this purpose. Worms, after having drawn in and gnawed the basal end, often push the petioles out of their burrows; and then drag in fresh ones, either by the base for food, or by the apex for plugging up the mouth more effectually. Thus, out of 37 petioles inserted by their tips, 5 had been previously drawn in by the base, for this part had been gnawed. Again, I collected a handful of petioles lying loose on the ground close to some plugged-up burrows, where the surface was thickly strewed with other petioles which apparently had never been touched by worms; and 14 out of 47 , after having had their bases gnawed had been pushed out of the burrows and were now lying on the ground. From these several facts we may conclude that worms draw in some petioles of the ash by the base to serve as food, and others by the tip to plug up the mouths of their burrows in the most efficient manner.

In order to see how the triangles would be seized by worms, some in a damp state were given to worms kept in confinement. They were seized in three different manners in the case of both the narrow and broad triangles: viz., by the margin; by one of the three angles, which was often completely engulfed in their mouths; and lastly, by suction applied to any part of the flat surface. If lines parallel to the base and an inch apart, are drawn across a triangle with the sides three inches in length, it will be divided into three parts of equal length. Now if worms seized indifferently by chance any part, they would assuredly seize on the basal part or division far oftener than on either of the two other divisions. For the area of the basal to the apical part is as 5 to 1, so that the chance of the former being drawn into a burrow by suction, will be as 5 to 1, compared with the apical part. The base offers two angles and the apex only one, so that the former would have twice as good a chance of being engulfed in a worm's mouth, as would the apex. It should, however, be stated that the apical angle is not often seized by worms; the margin at a little distance on either side being preferred. I judge of this from having found in 40 out of 46 cases in which triangles had been drawn into burrows by their apical ends, that the tip had been doubled back within the burrow for a length of between 1/20 of an inch and 1 inch. Lastly, the proportion between the margins of the basal and apical parts is as 3 to 2 for the broad, and 2 1/2 to 2 for the narrow triangles. From these several considerations it might certainly have been expected, supposing that worms seized hold of the triangles by chance, that a considerably larger proportion would have been dragged into the burrows by the basal than by the apical part; but we shall immediately see how different was the result.

Triangles of the above specified sizes were scattered on the ground in many places and on many successive nights near worm-burrows, from which the leaves, petioles, twigs, &c., with which they had been plugged, were removed. Altogether 303 triangles were drawn by worms into their burrows: 12 others were drawn in by both ends, but as it was impossible to judge by which end they had been first seized, these are excluded. Of the 303, 62 per cent. had been drawn in by the apex ; 15 per cent. by the middle; and 23 per cent. by the basal part. If they had been drawn indifferently by any point, the proportion for the apical, middle and basal parts would have been 33.3 per cent. for each; but, as we have just seen, it might have been expected that a much larger proportion would have been drawn in by the basal than by any other part. As the case stands, nearly three times as many were drawn in by the apex as by the base. If we consider the broad triangles by themselves, 59 per cent. were drawn in by the apex, 25 per cent. by the middle, and 16 per cent. by the base. Of the narrow triangles, 65 per cent. were drawn in by the apex, 14 per cent, by the middle, and 21 per cent. by the base; so that here those drawn in by the apex were more than 3 times as many as those drawn in by the base. We may therefore conclude that the manner in which the triangles are drawn into the burrows is not a matter of chance.

In eight cases, two triangles had been drawn into the same burrow, and in seven of these cases, one had been drawn in by the apex and the other by the base. This again indicates that the result is not determined by chance. Worms appear sometimes to revolve in the act of drawing in the triangles, for five out of the whole lot had been wound into an irregular spire round the inside of the burrow. Worms kept in a warm room drew 63 triangles into their burrows; but, as in the case of the pine-leaves, they worked in a rather careless manner, for only 44 per cent. were drawn in by the apex, 22 per cent. by the middle, and 33 per cent. by the base. In five cases, two triangles were drawn into the same burrow.

It may be suggested with much apparent probability that so large a proportion of the triangles were drawn in by the apex, not from the worms having selected this end as the most convenient for the purpose, but from having first tried in other ways and failed. This notion was countenanced by the manner in which worms in confinement were seen to drag about and drop the triangles; but then they were working carelessly. I did not at first perceive the importance of this subject, but merely noticed that the bases of those triangles which had been drawn in by the apex, were generally clean and not crumpled. The subject was afterwards attended to carefully. In the first place several triangles which had been drawn in by the basal angles, or by the base, or a little above the base, and which were thus much crumpled and dirtied, were left for some hours in water and were then well shaken while immersed; but neither the dirt nor the creases were thus removed. Only slight creases could be obliterated, even by pulling the wet triangles several times through my fingers. Owing to the slime from the worms' bodies, the dirt was not easily washed off. We may therefore conclude that if a triangle, before being dragged in by the apex, had been dragged into a burrow by its base with even a slight degree of force, the basal part would long retain its creases and remain dirty. The condition of 89 triangles , which had been drawn in by the apex, was observed; and the bases of only 7 of them were at all creased, being at the same time generally dirty. Of the 82 uncreased triangles, 14 were dirty at the base; but it does not follow from this fact that these had first been dragged towards the burrows by their bases; for the worms sometimes covered large portions of the triangles with slime, and these when dragged by the apex over the ground would be dirtied; and during rainy weather, the triangles were often dirtied over one whole side or over both sides. If the worms had dragged the triangles to the mouths of their burrows by their bases, as often as by their apices, and had then perceived, without actually trying to draw them into the burrow, that the broader end was not well adapted for this purpose--even in this case a large proportion would probably have had their basal ends dirtied. We may therefore infer--improbable as is the inference--that worms are able by some means to judge which is the best end by which to draw triangles of paper into their burrows.

The percentage results of the foregoing observations on the manner in which worms draw various kinds of objects into the mouths of their burrows may be abridged as follows:--

Nature of Drawn into the Drawn in, by or Drawn in, by or Object. burrows, by or near the near the base. near the apex. middle. Leaves of 80 11 9 various kinds --of the Lime, 79 17 4 basal margin of blade broad, apex acuminated --of a Laburnum, 63 10 27 basal part of blade as narrow as, or sometimes little narrower than the apical part --of the 34 ... 66 Rhododendron, basal part of blade often narrower than the apical part --of Pine-trees, ... ... 100 consisting of two needles arising from a common base Petioles of a 76 ... 24 Clematis, somewhat pointed at the apex, and blunt at the base --of the Ash, 48.5 ... 51.5 the thick basal end often drawn in to serve as food --of Robinia, 44 ... 56 extremely thin, especially towards the apex, so as to be ill-fitted for plugging up the burrows Triangles of 62 15 23 paper, of the two sizes --of the broad 59 25 16 ones alone --of the narrow 65 14 21 ones alone

As worms are not guided by special instincts in each particular case, though possessing a general instinct to plug up their burrows, and as chance is excluded, the next most probable conclusion seems to be that they try in many different ways to draw in objects, and at last succeed in some one way. But it is surprising that an animal so low in the scale as a worm should have the capacity for acting in this manner, as many higher animals have no such capacity. For instance, ants may be seen vainly trying to drag an object transversely to their course, which could be easily drawn longitudinally; though after a time they generally act in a wiser manner, M. Fabre states that a Sphex--an insect belonging to the same highly-endowed order with ants--stocks its nest with paralysed grass-hoppers, which are invariably dragged into the burrow by their antennae. When these were cut off close to the head, the Sphex seized the palpi; but when these were likewise cut off, the attempt to drag its prey into the burrow was given up in despair. The Sphex had not intelligence enough to seize one of the six legs or the ovipositor of the grasshopper, which, as M. Fabre remarks, would have served equally well. So again, if the paralysed prey with an egg attached to it be taken out of the cell, the Sphex after entering and finding the cell empty, nevertheless closes it up in the usual elaborate manner. Bees will try to escape and go on buzzing for hours on a window, one half of which has been left open. Even a pike continued during three months to dash and bruise itself against the glass sides of an aquarium, in the vain attempt to seize minnows on the opposite side. A cobra-snake was seen by Mr. Layard to act much more wisely than either the pike or the Sphex; it had swallowed a toad lying within a hole, and could not withdraw its head; the toad was disgorged, and began to crawl away; it was again swallowed and again disgorged; and now the snake had learnt by experience, for it seized the toad by one of its legs and drew it out of the hole. The instincts of even the higher animals are often followed in a senseless or purposeless manner: the weaver-bird will perseveringly wind threads through the bars of its cage, as if building a nest: a squirrel will pat nuts on a wooden floor, as if he had just buried them in the ground: a beaver will cut up logs of wood and drag them about, though there is no water to dam up; and so in many other cases.

But evidence has been advanced showing that worms do not habitually try to draw objects into their burrows in many different ways. Thus half-decayed lime-leaves from their flexibility could have been drawn in by their middle or basal parts, and were thus drawn into the burrows in considerable numbers; yet a large majority were drawn in by or near the apex. The petioles of the Clematis could certainly have been drawn in with equal ease by the base and apex; yet three times and in certain cases five times as many were drawn in by the apex as by the base. It might have been thought that the foot-stalks of leaves would have tempted the worms as a convenient handle; yet they are not largely used, except when the base of the blade is narrower than the apex. A large number of the petioles of the ash are drawn in by the base; but this part serves the worms as food. In the case of pine-leaves worms plainly show that they at least do not seize the leaf by chance; but their choice does not appear to be determined by the divergence of the two needles, and the consequent advantage or necessity of drawing them into their burrows by the base. With respect to the triangles of paper, those which had been drawn in by the apex rarely had their bases creased or dirty; and this shows that the worms had not often first tried to drag them in by this end.

If worms are able to judge, either before drawing or after having drawn an object close to the mouths of their burrows, how best to drag it in, they must acquire some notion of its general shape. This they probably acquire by touching it in many places with the anterior extremity of their bodies, which serves as a tactile organ. It may be well to remember how perfect the sense of touch becomes in a man when born blind and deaf, as are worms. If worms have the power of acquiring some notion, however rude, of the shape of an object and of their burrows, as seems to be the case, they deserve to be called intelligent; for they then act in nearly the same manner as would a man under similar circumstances.

To sum up, as chance does not determine the manner in which objects are drawn into the burrows, and as the existence of specialized instincts for each particular case cannot be admitted, the first and most natural supposition is that worms try all methods until they at last succeed; but many appearances are opposed to such a supposition. One alternative alone is left, namely, that worms, although standing low in the scale of organization, possess some degree of intelligence. This will strike every one as very improbable; but it may be doubted whether we know enough about the nervous system of the lower animals to justify our natural distrust of such a conclusion. With respect to the small size of the cerebral ganglia, we should remember what a mass of inherited knowledge, with some power of adapting means to an end, is crowded into the minute brain of a worker-ant.

A pot was next filled with very fine ferruginous sand, which was pressed down, well watered, and thus rendered extremely compact. A large worm left on the surface did not succeed in penetrating it for some hours, and did not bury itself completely until 25 hrs. 40 min. had elapsed. This was effected by the sand being swallowed, as was evident by the large quantity ejected from the vent, long before the whole body had disappeared. Castings of a similar nature continued to be ejected from the burrow during the whole of the following day.

As doubts have been expressed by some writers whether worms ever swallow earth solely for the sake of making their burrows, some additional cases may be given. A mass of fine reddish sand, 23 inches in thickness, left on the ground for nearly two years, had been penetrated in many places by worms; and their castings consisted partly of the reddish sand and partly of black earth brought up from beneath the mass. This sand had been dug up from a considerable depth, and was of so poor a nature that weeds could not grow on it. It is therefore highly improbable that it should have been swallowed by the worms as food. Again in a field near my house the castings frequently consist of almost pure chalk, which lies at only a little depth beneath the surface; and here again it is very improbable that the chalk should have been swallowed for the sake of the very little organic matter which could have percolated into it from the poor overlying pasture. Lastly, a casting thrown up through the concrete and decayed mortar between the tiles, with which the now ruined aisle of Beaulieu Abbey had formerly been paved, was washed, so that the coarser matter alone was left. This consisted of grains of quartz, micaceous slate, other rocks, and bricks or tiles, many of them from 1/20 to 1/10 inch in diameter. No one will suppose that these grains were swallowed as food, yet they formed more than half of the casting, for they weighed 19 grains, the whole casting having weighed 33 grains. Whenever a worm burrows to a depth of some feet in undisturbed compact ground, it must form its passage by swallowing the earth; for it is incredible that the ground could yield on all sides to the pressure of the pharynx when pushed forwards within the worm's body.

If earth were swallowed only when worms deepened their burrows or made new ones, castings would be thrown up only occasionally; but in many places fresh castings may be seen every morning, and the amount of earth ejected from the same burrow on successive days is large. Yet worms do not burrow to a great depth, except when the weather is very dry or intensely cold. On my lawn the black vegetable mould or humus is only about 5 inches in thickness, and overlies light-coloured or reddish clayey soil: now when castings are thrown up in the greatest profusion, only a small proportion are light coloured, and it is incredible that the worms should daily make fresh burrows in every direction in the thin superficial layer of dark-coloured mould, unless they obtained nutriment of some kind from it. I have observed a strictly analogous case in a field near my house where bright red clay lay close beneath the surface. Again on one part of the Downs near Winchester the vegetable mould overlying the chalk was found to be only from 3 to 4 inches in thickness; and the many castings here ejected were as black as ink and did not effervesce with acids; so that the worms must have confined themselves to this thin superficial layer of mould, of which large quantities were daily swallowed. In another place at no great distance the castings were white; and why the worms should have burrowed into the chalk in some places and not in others, I am unable to conjecture.

Two great piles of leaves had been left to decay in my grounds, and months after their removal, the bare surface, several yards in diameter, was so thickly covered during several months with castings that they formed an almost continuous layer; and the large number of worms which lived here must have subsisted during these months on nutritious matter contained in the black earth.

The lowest layer from another pile of decayed leaves mixed with some earth was examined under a high power, and the number of spores of various shapes and sizes which it contained was astonishingly great; and these crushed in the gizzards of worms may largely aid in supporting them. Whenever castings are thrown up in the greatest number, few or no leaves are drawn into the burrows; for instance the turf along a hedgerow, about 200 yards in length, was daily observed in the autumn during several weeks, and every morning many fresh castings were seen; but not a single leaf was drawn into these burrows. These castings from their blackness and from the nature of the subsoil could not have been brought up from a greater depth than 6 or 8 inches. On what could these worms have subsisted during this whole time, if not on matter contained in the black earth? On the other hand, whenever a large number of leaves are drawn into the burrows, the worms seem to subsist chiefly on them, for few earth-castings are then ejected on the surface. This difference in the behaviour of worms at different times, perhaps explains a statement by Clapar?de, namely, that triturated leaves and earth are always found in distinct parts of their intestines.

Worms sometimes abound in places where they can rarely or never obtain dead or living leaves; for instance, beneath the pavement in well-swept courtyards, into which leaves are only occasionally blown. My son Horace examined a house, one corner of which had subsided; and he found here in the cellar, which was extremely damp, many small worm-castings thrown up between the stones with which the cellar was paved; and in this case it is improbable that the worms could ever have obtained leaves. Mr. A. C. Horner confirms this account, as he has seen castings in the cellars of his house, which is an old one at Tonbridge.

But the best evidence, known to me, of worms subsisting for at least considerable periods of time solely on the organic matter contained in earth, is afforded by some facts communicated to me by Dr. King. Near Nice large castings abound in extraordinary numbers, so that 5 or 6 were often found within the space of a square foot. They consist of fine, pale-coloured earth, containing calcareous matter, which after having passed through the bodies of worms and being dried, coheres with considerable force. I have reason to believe that these castings had been formed by species of Perichaeta, which have been naturalized here from the East. They rise like towers, with their summits often a little broader than their bases, sometimes to a height of above 3 and often to a height of 2 1/2 inches. The tallest of those which were measured was 3.3 inches in height and 1 inch in diameter. A small cylindrical passage runs up the centre of each tower, through which the worm ascends to eject the earth which it has swallowed, and thus to add to its height. A structure of this kind would not allow leaves being easily dragged from the surrounding ground into the burrows; and Dr. King, who looked carefully, never saw even a fragment of a leaf thus drawn in. Nor could any trace be discovered of the worms having crawled down the exterior surfaces of the towers in search of leaves; and had they done so, tracks would almost certainly have been left on the upper part whilst it remained soft. It does not, however, follow that these worms do not draw leaves into their burrows during some other season of the year, at which time they would not build up their towers.

From the several foregoing cases, it can hardly be doubted that worms swallow earth, not only for the sake of making their burrows, but for obtaining food. Hensen, however, concludes from his analyses of mould that worms probably could not live on ordinary vegetable mould, though he admits that they might be nourished to some extent by leaf-mould. But we have seen that worms eagerly devour raw meat, fat, and dead worms; and ordinary mould can hardly fail to contain many ova, larvae, and small living or dead creatures, spores of cryptogamic plants, and micrococci, such as those which give rise to saltpetre. These various organisms, together with some cellulose from any leaves and roots not utterly decayed, might well account for such large quantities of mould being swallowed by worms. It may be worth while here to recall the fact that certain species of Utricularia, which grow in damp places in the tropics, possess bladders beautifully constructed for catching minute subterranean animals; and these traps would not have been developed unless many small animals inhabited such soil.

The burrows run down perpendicularly, or more commonly a little obliquely. They are said sometimes to branch, but as far as I have seen this does not occur, except in recently dug ground and near the surface. They are generally, or as I believe invariably, lined with a thin layer of fine, dark-coloured earth voided by the worms; so that they must at first be made a little wider than their ultimate diameter. I have seen several burrows in undisturbed sand thus lined at a depth of 4 ft. 6 in.; and others close to the surface thus lined in recently dug ground. The walls of fresh burrows are often dotted with little globular pellets of voided earth, still soft and viscid; and these, as it appears, are spread out on all sides by the worm as it travels up or down its burrow. The lining thus formed becomes very compact and smooth when nearly dry, and closely fits the worm's body. The minute reflexed bristles which project in rows on all sides from the body, thus have excellent points of support; and the burrow is rendered well adapted for the rapid movement of the animal. The lining appears also to strengthen the walls, and perhaps saves the worm's body from being scratched. I think so because several burrows which passed through a layer of sifted coal-cinders, spread over turf to a thickness of 1 1/2 inch, had been thus lined to an unusual thickness. In this case the worms, judging from the castings, had pushed the cinders away on all sides and had not swallowed any of them. In another place, burrows similarly lined, passed through a layer of coarse coal-cinders, 3 1/2 inches in thickness. We thus see that the burrows are not mere excavations, but may rather be compared with tunnels lined with cement.

The mouths of the burrow are in addition often lined with leaves; and this is an instinct distinct from that of plugging them up, and does not appear to have been hitherto noticed. Many leaves of the Scotch-fir or pine were given to worms kept in confinement in two pots; and when after several weeks the earth was carefully broken up, the upper parts of three oblique burrows were found surrounded for lengths of 7, 4, and 3 1/2 inches with pine-leaves, together with fragments of other leaves which had been given the worms as food. Glass beads and bits of tile, which had been strewed on the surface of the soil, were stuck into the interstices between the pine-leaves; and these interstices were likewise plastered with the viscid castings voided by the worms. The structures thus formed cohered so well, that I succeeded in removing one with only a little earth adhering to it. It consisted of a slightly curved cylindrical case, the interior of which could be seen through holes in the sides and at either end. The pine-leaves had all been drawn in by their bases; and the sharp points of the needles had been pressed into the lining of voided earth. Had this not been effectually done, the sharp points would have prevented the retreat of the worms into their burrows; and these structures would have resembled traps armed with converging points of wire, rendering the ingress of an animal easy and its egress difficult or impossible. The skill shown by these worms is noteworthy and is the more remarkable, as the Scotch pine is not a native of this district.

After having examined these burrows made by worms in confinement, I looked at those in a flower-bed near some Scotch pines. These had all been plugged up in the ordinary manner with the leaves of this tree, drawn in for a length of from 1 to 1 1/2 inch; but the mouths of many of them were likewise lined with them, mingled with fragments of other kinds of leaves, drawn in to a depth of 4 or 5 inches. Worms often remain, as formerly stated, for a long time close to the mouths of their burrows, apparently for warmth; and the basket-like structures formed of leaves would keep their bodies from coming into close contact with the cold damp earth. That they habitually rested on the pine-leaves, was rendered probable by their clean and almost polished surfaces.

The burrows which run far down into the ground, generally, or at least often, terminate in a little enlargement or chamber. Here, according to Hoffmeister, one or several worms pass the winter rolled up into a ball. Mr. Lindsay Carnagie informed me that he had examined many burrows over a stone-quarry in Scotland, where the overlying boulder-clay and mould had recently been cleared away, and a little vertical cliff thus left. In several cases the same burrow was a little enlarged at two or three points one beneath the other; and all the burrows terminated in a rather large chamber, at a depth of 7 or 8 feet from the surface. These chambers contained many small sharp bits of stone and husks of flax-seeds. They must also have contained living seeds, for on the following spring Mr. Carnagie saw grass-plants sprouting out of some of the intersected chambers. I found at Abinger in Surrey two burrows terminating in similar chambers at a depth of 36 and 41 inches, and these were lined or paved with little pebbles, about as large as mustard seeds; and in one of the chambers there was a decayed oat-grain, with its husk. Hensen likewise states that the bottoms of the burrows are lined with little stones; and where these could not be procured, seeds, apparently of the pear, had been used, as many as fifteen having been carried down into a single burrow, one of which had germinated. We thus see how easily a botanist might be deceived who wished to learn how long deeply buried seeds remained alive, if he were to collect earth from a considerable depth, on the supposition that it could contain only seeds which had long lain buried. It is probable that the little stones, as well as the seeds, are carried down from the surface by being swallowed; for a surprising number of glass beads, bits of tile and of glass were certainly thus carried down by worms kept in pots; but some may have been carried down within their mouths. The sole conjecture which I can form why worms line their winter-quarters with little stones and seeds, is to prevent their closely coiled-up bodies from coming into close contact with the surrounding cold soil; and such contact would perhaps interfere with their respiration which is effected by the skin alone.

A worm after swallowing earth, whether for making its burrow or for food, soon comes to the surface to empty its body. The ejected earth is thoroughly mingled with the intestinal secretions, and is thus rendered viscid. After being dried it sets hard. I have watched worms during the act of ejection, and when the earth was in a very liquid state it was ejected in little spurts, and by a slow peristaltic movement when not so liquid. It is not cast indifferently on any side, but with some care, first on one and then on another side; the tail being used almost like a trowel. When a worm comes to the surface to eject earth, the tail protrudes, but when it collects leaves its head must protrude. Worms therefore must have the power of turning round in their closely-fitting burrows; and this, as it appears to us, would be a difficult feat. As soon as a little heap has been formed, the worm apparently avoids, for the sake of safety, protruding its tail; and the earthy matter is forced up through the previously deposited soft mass. The mouth of the same burrow is used for this purpose for a considerable time. In the case of the tower-like castings near Nice, and of the similar but still taller towers from Bengal , a considerable degree of skill is exhibited in their construction. Dr. King also observed that the passage up these towers hardly ever ran in the same exact line with the underlying burrow, so that a thin cylindrical object such as a haulm of grass, could not be passed down the tower into the burrow; and this change of direction probably serves in some manner as a protection.

Worms do not always eject their castings on the surface of the ground. When they can find any cavity, as when burrowing in newly turned-up earth, or between the stems of banked-up plants, they deposit their castings in such places. So again any hollow beneath a large stone lying on the surface of the ground, is soon filled up with their castings. According to Hensen, old burrows are habitually used for this purpose; but as far as my experience serves, this is not the case, excepting with those near the surface in recently dug ground. I think that Hensen may have been deceived by the walls of old burrows, lined with black earth, having sunk in or collapsed; for black streaks are thus left, and these are conspicuous when passing through light-coloured soil, and might be mistaken for completely filled-up burrows.

It is certain that old burrows collapse in the course of time; for as we shall see in the next chapter, the fine earth voided by worms, if spread out uniformly, would form in many places in the course of a year a layer 0.2 of an inch in thickness; so that at any rate this large amount is not deposited within the old unused burrows. If the burrows did not collapse, the whole ground would be first thickly riddled with holes to a depth of about ten inches, and in fifty years a hollow unsupported space, ten inches in depth, would be left. The holes left by the decay of successively formed roots of trees and plants must likewise collapse in the course of time.

The burrows of worms run down perpendicularly or a little obliquely, and where the soil is at all argillaceous, there is no difficulty in believing that the walls would slowly flow or slide inwards during very wet weather. When, however, the soil is sandy or mingled with many small stones, it can hardly be viscous enough to flow inwards during even the wettest weather; but another agency may here come into play. After much rain the ground swells, and as it cannot expand laterally, the surface rises; during dry weather it sinks again. For instance, a large flat stone laid on the surface of a field sank 3.33 mm. whilst the weather was dry between May 9th and June 13th, and rose 1.91 mm, between September 7th and 19th of the same year, much rain having fallen during the latter part of this time. During frosts and thaws the movements were twice as great. These observations were made by my son Horace, who will hereafter publish an account of the movements of this stone during successive wet and dry seasons, and of the effects of its being undermined by worms. Now when the ground swells, if it be penetrated by cylindrical holes, such as worm-burrows, their walls will tend to yield and be pressed inwards; and the yielding will be greater in the deeper parts from the greater weight of the superincumbent soil which has to be raised, than in the parts near the surface. When the ground dries, the walls will shrink a little and the burrows will be a little enlarged. Their enlargement, however, through the lateral contraction of the ground, will not be favoured, but rather opposed, by the weight of the superincumbent soil.

In this volume we are chiefly concerned with the earth cast up by worms, and I have gleaned a few facts on this subject with respect to distant lands. Worms throw up plenty of castings in the United States. In Venezuela, castings, probably ejected by species of Urochaeta, are common in the gardens and fields, but not in the forests, as I hear from Dr. Ernst of Caracas. He collected 156 castings from the court-yard of his house, having an area of 200 square yards. They varied in bulk from half a cubic centimeter to five cubic centimeters, and were on an average three cubic centimeters. They were, therefore, of small size in comparison with those often found in England; for six large castings from a field near my house averaged 16 cubic centimeters. Several species of earth-worms are common in St. Catharina in South Brazil, and Fritz M?ller informs me "that in most parts of the forests and pasture-lands, the whole soil, to a depth of a quarter of a metre, looks as if it had passed repeatedly through the intestines of earth-worms, even where hardly any castings are to be seen on the surface." A gigantic but very rare species is found there, the burrows of which are sometimes even two centimeters or nearly 0.8 of an inch in diameter, and which apparently penetrate the ground to a great depth.

In the dry climate of New South Wales, I hardly expected that worms would be common; but Dr. G. Krefft of Sydney, to whom I applied, after making inquiries from gardeners and others, and from his own observations, informs me that their castings abound. He sent me some collected after heavy rain, and they consisted of little pellets, about 0.15 inch in diameter; and the blackened sandy earth of which they were formed still cohered with considerable tenacity.

The late Mr. John Scott of the Botanic Gardens near Calcutta made many observations for me on worms living under the hot and humid climate of Bengal. The castings abound almost everywhere, in jungles and in the open ground, to a greater degree, as he thinks, than in England. After the water has subsided from the flooded rice-fields, the whole surface very soon becomes studded with castings--a fact which much surprised Mr. Scott, as he did not know how long worms could survive beneath water. They cause much trouble in the Botanic garden, "for some of the finest of our lawns can be kept in anything like order only by being almost daily rolled; if left undisturbed for a few days they become studded with large castings." These closely resemble those described as abounding near Nice; and they are probably the work of a species of Perichaeta. They stand up like towers, with an open passage in the centre.

A figure of one of these castings from a photograph is here given . The largest received by me was 3 1/2 inches in height and 1.35 inch in diameter; another was only 3/4 inch in diameter and 2 3/4 in height. In the following year, Mr. Scott measured several of the largest; one was 6 inches in height and nearly 1 1/2 in diameter: two others were 5 inches in height and respectively 2 and rather more than 2 1/2 inches in diameter. The average weight of the 22 castings sent to me was 35 grammes ; and one of them weighed 44.8 grammes . All these castings were thrown up either in one night or in two. Where the ground in Bengal is dry, as under large trees, castings of a different kind are found in vast numbers: these consist of little oval or conical bodies, from about the 1/20 to rather above 1/10 of an inch in length. They are obviously voided by a distinct species of worms.

The period during which worms near Calcutta display such extraordinary activity lasts for only a little over two months, namely, during the cool season after the rains. At this time they are generally found within about 10 inches beneath the surface. During the hot season they burrow to a greater depth, and are then found coiled up and apparently hybernating. Mr. Scott has never seen them at a greater depth than 2 1/2 feet, but has heard of their having been found at 4 feet. Within the forests, fresh castings may be found even during the hot season. The worms in the Botanic garden, during the cool and dry season, draw many leaves and little sticks into the mouths of their burrows, like our English worms; but they rarely act in this manner during the rainy season.

Mr. Scott saw worm-castings on the lofty mountains of Sikkim in North India. In South India Dr. King found in one place, on the plateau of the Nilgiris, at an elevation of 7000 feet, "a good many castings," which are interesting for their great size. The worms which eject them are seen only during the wet season, and are reported to be from 12 to 15 inches in length, and as thick as a man's little finger. These castings were collected by Dr. King after a period of 110 days without any rain; and they must have been ejected either during the north-east or more probably during the previous south-west monsoon; for their surfaces had suffered some disintegration and they were penetrated by many fine roots. A drawing is here given of one which seems to have best retained its original size and appearance. Notwithstanding some loss from disintegration, five of the largest of these castings weighed each on an average 89.5 grammes, or above 3 oz.; and the largest weighed 123.14 grammes, or 4 1/3 oz.,--that is, above a quarter of a pound! The largest convolutions were rather more than one inch in diameter; but it is probable that they had subsided a little whilst soft, and that their diameters had thus been increased. Some had flowed so much that they now consisted of a pile of almost flat confluent cakes. All were formed of fine, rather light-coloured earth, and were surprisingly hard and compact, owing no doubt to the animal matter by which the particles of earth had been cemented together. They did not disintegrate, even when left for some hours in water. Although they had been cast up on the surface of gravelly soil, they contained extremely few bits of rock, the largest of which was only 0.15 inch in diameter.

Dr. King saw in Ceylon a worm about 2 feet in length and 1/2 inch in diameter; and he was told that it was a very common species during the wet season. These worms must throw up castings at least as large as those on the Nilgiri Mountains; but Dr. King saw none during his short visit to Ceylon.

Sufficient facts have now been given, showing that worms do much work in bringing up fine earth to the surface in most or all parts of the world, and under the most different climates.

Rate at which various objects strewed on the surface of grass-fields are covered up by the castings of worms--The burial of a paved path--The slow subsidence of great stones left on the surface--The number of worms which live within a given space--The weight of earth ejected from a burrow, and from all the burrows within a given space--The thickness of the layer of mould which the castings on a given space would form within a given time if uniformly spread out--The slow rate at which mould can increase to a great thickness--Conclusion.

WE now come to the more immediate subject of this volume, namely, the amount of earth which is brought up by worms from beneath the surface, and is afterwards spread out more or less completely by the rain and wind. The amount can be judged of by two methods,--by the rate at which objects left on the surface are buried, and more accurately by weighing the quantity brought up within a given time. We will begin with the first method, as it was first followed.

Near Mael Hall in Staffordshire, quick-lime had been spread about the year 1827 thickly over a field of good pasture-land, which had not since been ploughed. Some square holes were dug in this field in the beginning of October 1837; and the sections showed a layer of turf, formed by the matted roots of the grasses, 1/2 inch in thickness, beneath which, at a depth of 2 1/2 inches , a layer of the lime in powder or in small lumps could be distinctly seen running all round the vertical sides of the holes. The soil beneath the layer of lime was either gravelly or of a coarse sandy nature, and differed considerably in appearance from the overlying dark-coloured fine mould. Coal-cinders had been spread over a part of this same field either in the year 1833 or 1834; and when the above holes were dug, that is after an interval of 3 or 4 years, the cinders formed a line of black spots round the holes, at a depth of 1 inch beneath the surface, parallel to and above the white layer of lime. Over another part of this field cinders had been strewed, only about half-a-year before, and these either still lay on the surface or were entangled among the roots of the grasses; and I here saw the commencement of the burying process, for worm-castings had been heaped on several of the smaller fragments. After an interval of 4 3/4 years this field was re-examined, and now the two layers of lime and cinders were found almost everywhere at a greater depth than before by nearly 1 inch, we will say by 3/4 of an inch. Therefore mould to an average thickness of 0.22 of an inch had been annually brought up by the worms, and had been spread over the surface of this field.

Coal-cinders had been strewed over another field, at a date which could not be positively ascertained, so thickly that they formed a layer, 1 inch in thickness at a depth of about 3 inches from the surface. The layer was so continuous that the over-lying dark vegetable mould was connected with the sub-soil of red clay only by the roots of the grasses; and when these were broken, the mould and the red clay fell apart. In a third field, on which coal-cinders and burnt marl had been strewed several times at unknown dates, holes were dug in 1842; and a layer of cinders could be traced at a depth of 3 1/2 inches, beneath which at a depth of 9 1/2 inches from the surface there was a line of cinders together with burnt marl. On the sides of one hole there were two layers of cinders, at 2 and 3 1/2 inches beneath the surface; and below them at a depth in parts of 9 1/2 , and in other parts of 10 1/2 inches there were fragments of burnt marl. In a fourth field two layers of lime, one above the other, could be distinctly traced, and beneath them a layer of cinders and burnt marl at a depth of from 10 to 12 inches below the surface.

A piece of waste, swampy land was enclosed, drained, ploughed, harrowed and thickly covered in the year 1822 with burnt marl and cinders. It was sowed with grass seeds, and now supports a tolerably good but coarse pasture. Holes were dug in this field in 1837, or 15 years after its reclamation, and we see in the accompanying diagram , reduced to half of the natural scale, that the turf was 1/2 inch thick, beneath which there was a layer of vegetable mould 2 1/2 inches thick. This layer did not contain fragments of any kind; but beneath it there was a layer of mould, 1 1/2 inch in thickness, full of fragments of burnt marl, conspicuous from their red colour, one of which near the bottom was an inch in length; and other fragments of coal-cinders together with a few white quartz pebbles. Beneath this layer and at a depth of 4 1/2 inches from the surface, the original black, peaty, sandy soil with a few quartz pebbles was encountered. Here therefore the fragments of burnt marl and cinders had been covered in the course of 15 years by a layer of fine vegetable mould, only 2 1/2 inches in thickness, excluding the turf. Six and a half years subsequently this field was re-examined, and the fragments were now found at from 4 to 5 inches beneath the surface. So that in this interval of 6 1/2 years, about 1 1/2 inch of mould had been added to the superficial layer. I am surprised that a greater quantity had not been brought up during the whole 21 1/2 years, for in the closely underlying black, peaty soil there were many worms. It is, however, probable that formerly, whilst the land remained poor, worms were scanty; and the mould would then have accumulated slowly. The average annual increase of thickness for the whole period is 0.19 of an inch.

Two other cases are worth recording. In the spring of 1835, a field, which had long existed as poor pasture and was so swampy that it trembled slightly when stamped on, was thickly covered with red sand so that the whole surface appeared at first bright red. When holes were dug in this field after an interval of about 2 1/2 years, the sand formed a layer at a depth of 3/4 in. beneath the surface. In 1842 fresh holes were dug, and now the red sand formed a distinct layer, 2 inches beneath the surface, or 1 1/2 inch beneath the turf; so that on an average, 0.21 inch of mould had been annually brought to the surface. Immediately beneath the layer of red sand, the original substratum of black sandy peat extended.

A grass field, likewise not far from Maer Hall, had formerly been thickly covered with marl, and was then left for several years as pasture; it was afterwards ploughed. A friend had three trenches dug in this field 28 years after the application of the marl, and a layer of the marl fragments could be traced at a depth, carefully measured, of 12 inches in some parts, and of 14 inches in other parts. This difference in depth depended on the layer being horizontal, whilst the surface consisted of ridges and furrows from the field having been ploughed. The tenant assured me that it had never been turned up to a greater depth than from 6 to 8 inches; and as the fragments formed an unbroken horizontal layer from 12 to 14 inches beneath the surface, these must have been buried by the worms whilst the land was in pasture before it was ploughed, for otherwise they would have been indiscriminately scattered by the plough throughout the whole thickness of the soil. Four-and-a-half years afterwards I had three holes dug in this field, in which potatoes had been lately planted, and the layer of marl-fragments was now found 13 inches beneath the bottoms of the furrows, and therefore probably 15 inches beneath the general level of the field. It should, however, be observed that the thickness of the blackish sandy soil, which had been thrown up by the worms above the marl-fragments in the course of 32 1/2 years, would have measured less than 15 inches, if the field had always remained as pasture, for the soil would in this case have been much more compact. The fragments of marl almost rested on an undisturbed substratum of white sand with quartz pebbles; and as this would be little attractive to worms, the mould would hereafter be very slowly increased by their action.

We will now give some cases of the action of worms, on land differing widely from the dry sandy or the swampy pastures just described. The chalk formation extends all round my house in Kent; and its surface, from having been exposed during an immense period to the dissolving action of rain-water, is extremely irregular, being abruptly festooned and penetrated by many deep well-like cavities. During the dissolution of the chalk, the insoluble matter, including a vast number of unrolled flints of all sizes, has been left on the surface and forms a bed of stiff red clay, full of flints, and generally from 6 to 14 feet in thickness. Over the red clay, wherever the land has long remained as pasture, there is a layer a few inches in thickness, of dark-coloured vegetable mould.

A quantity of broken chalk was spread, on December 20, 1842, over a part of a field near my house, which had existed as pasture certainly for 30, probably for twice or thrice as many years. The chalk was laid on the land for the sake of observing at some future period to what depth it would become buried. At the end of November, 1871, that is after an interval of 29 years, a trench was dug across this part of the field; and a line of white nodules could be traced on both sides of the trench, at a depth of 7 inches from the surface. The mould, therefore, had here been thrown up at an average rate of 0.22 inch per year. Beneath the line of chalk nodules there was in parts hardly any fine earth free of flints, while in other parts there was a layer, 2 1/4 inches in thickness. In this latter case the mould was altogether 9 1/4 inches thick; and in one such spot a nodule of chalk and a smooth flint pebble, both of which must have been left at some former time on the surface, were found at this depth. At from 11 to 12 inches beneath the surface, the undisturbed reddish clay, full of flints, extended. The appearance of the above nodules of chalk surprised me, much at first, as they closely resembled water-worn pebbles, whereas the freshly-broken fragments had been angular. But on examining the nodules with a lens, they no longer appeared water-worn, for their surfaces were pitted through unequal corrosion, and minute, sharp points, formed of broken fossil shells, projected from them. It was evident that the corners of the original fragments of chalk had been wholly dissolved, from presenting a large surface to the carbonic acid dissolved in the rain-water and to that generated in soil containing vegetable matter, as well as to the humus-acids. The projecting corners would also, relatively to the other parts, have been embraced by a larger number of living rootlets; and these have the power of even attacking marble, as Sachs has shown. Thus, in the course of 29 years, buried angular fragments of chalk had been converted into well-rounded nodules.

A field, which adjoins the one just described, slopes in one part rather steeply ; this part was last ploughed in 1841, was then harrowed and left to become pasture-land. For several years it was clothed with an extremely scant vegetation, and was so thickly covered with small and large flints that the field was always called by my sons "the stony field." When they ran down the slope the stones clattered together, I remember doubting whether I should live to see these larger flints covered with vegetable mould and turf. But the smaller stones disappeared before many years had elapsed, as did every one of the larger ones after a time; so that after thirty years a horse could gallop over the compact turf from one end of the field to the other, and not strike a single stone with his shoes. To anyone who remembered the appearance of the field in 1842, the transformation was wonderful. This was certainly the work of the worms, for though castings were not frequent for several years, yet some were thrown up month after month, and these gradually increased in numbers as the pasture improved. In the year 1871 a trench was dug on the above slope, and the blades of grass were cut off close to the roots, so that the thickness of the turf and of the vegetable mould could be measured accurately. The turf was rather less than half an inch, and the mould, which did not contain any stones, 2 1/2 inches in thickness. Beneath this lay coarse clayey earth full of flints, like that in any of the neighbouring ploughed fields. This coarse earth easily fell apart from the overlying mould when a spit was lifted up. The average rate of accumulation of the mould during the whole thirty years was only .083 inch per year ; but the rate must have been much slower at first, and afterwards considerably quicker.

The transformation in the appearance of this field, which had been effected beneath my eyes, was afterwards rendered the more striking, when I examined in Knole Park a dense forest of lofty beech-trees, beneath which nothing grew. Here the ground was thickly strewed with large naked stones, and worm-castings were almost wholly absent. Obscure lines and irregularities on the surface indicated that the land had been cultivated some centuries ago. It is probable that a thick wood of young beech-trees sprung up so quickly, that time enough was not allowed for worms to cover up the stones with their castings, before the site became unfitted for their existence. Anyhow the contrast between the state of the now miscalled "stony field," well stocked with worms, and the present state of the ground beneath the old beech-trees in Knole Park, where worms appeared to be absent, was striking.

A narrow path running across part of my lawn was paved in 1843 with small flagstones, set edgeways; but worms threw up many castings and weeds grew thickly between them. During several years the path was weeded and swept; but ultimately the weeds and worms prevailed, and the gardener ceased to sweep, merely mowing off the weeds, as often as the lawn was mowed. The path soon became almost covered up, and after several years no trace of it was left. On removing, in 1877, the thin overlying layer of turf, the small flag-stones, all in their proper places, were found covered by an inch of fine mould.

Add to tbrJar First Page Next Page Prev Page

 

Back to top