Read Ebook: More Science from an Easy Chair by Lankester E Ray Edwin Ray Sir
Font size:
Background color:
Text color:
Add to tbrJar First Page Next Page
Ebook has 194 lines and 31867 words, and 4 pages
the custom of separating pictures from other museum objects) there grew up in London, under the State Department of Education, a vast collection of all kinds of works of art of all countries and ages, including pictures, which is now sumptuously housed in the Victoria and Albert Museum.
Though I propose to write here with special reference to "museums," in the more limited sense as repositories of objects which are the bases of our knowledge of the history of man and his arts, and as the storehouses of specimens which in the same way are the material by the study of which we arrive at a knowledge of the history of the earth, and of the living things which have existed, and of others which still exist on its surface--yet it is obvious that the general purposes of all collections of interesting objects and their arrangement for public use and benefit must be the same, although there are special purposes in view in regard to some collections which do not exist in regard to others. Not long since Mr. Claude Phillips ably set forth some of the principles which should guide the arrangement and exhibition of objects in an art museum, and criticised the plan at present adopted in the Victoria and Albert Museum. As I hold views in regard to the arrangement of natural history museums which are very similar to his, I think it may be useful to explain here what they are.
I may point out that nearly every branch of knowledge should have--in a civilised well-provided community--its collection of material objects, either specimens, models, or ancient examples and remains, which should be "records" to be religiously preserved for future reference and comparison by expert students, whilst others should be there to serve as demonstrations of "great" facts of nature or of human art--direct and straightforward appeals--to the ordinary intelligent man. You might well have a museum of astronomy, containing models of the solar system showing the relative distances and sizes of the heavenly bodies--as well as modern and ancient astronomical instruments, and the records obtained by their use. Again, you might have , at the other end of the scale in dignity and age, a museum illustrating the history and present developments of the smelting of iron and other metals, their purification, their alloying, and properties--as also a museum of paper-making and one of the steam engine and its modern rivals. In such cases the purpose of the museum would be plain enough and comparatively easy to carry out.
Most museums which have come into existence within the last 200 years suffer from the fact that they are mere enlargements of the ancient collector's "cabinet of rare and curious things," brought together and arranged without rhyme or reason. No one has ever attempted to say what is precisely the aim and intention as a public enterprise of any of our great museums, and accordingly there has been no consideration, discussion, or agreement as to the methods of collection, selection, arrangement, exhibition, and storage of the objects assembled within their walls. Thousands, even millions of pounds, have been expended on the building of museums, on the purchase of specimens, on cases and cataloguing, and on the salaries of directors, and keepers, and assistants, yet the museums remain, so far as any declaration of purpose and principle is concerned, mere "repositories," as in the words of the old Act of Parliament constituting the British Museum--for the use and enjoyment of the public, it is true, but without any expression of a conception of how that use and enjoyment is to be limited so as to make them something better than a dime-show, or how any serious purpose is to be achieved by their costly housing and up-keep. No doubt various directors and keepers have from time to time shown intelligence and laboured to make museums not only places of enjoyment and "edification," but also the means of increasing knowledge and rendering service to the State. But the scope of our public museums, and the principles and methods by which it may be realised, have never been agreed upon, and consequently are not definitely recognised by the State nor by the curiously ill-chosen committees of managers, or trustees, to whose tender mercies the ultimate control of these institutions is confided--apparently by haphazard or misapprehension.
The notion of a town corporation, or of the central government at this or that date, has been that museums are best controlled and public money expended in connection with them by persons who know nothing about the real importance of the collections, and receive no guidance from any scheme or statutable declaration of specific purpose drawn up by a competent authority. I will endeavour to state what those purposes should be.
When one tries to estimate what is really the value to the community of public "museums," one is led inevitably to the conclusion that their most important purpose--whether they are museums of natural history, of antiquities, or of art--is to serve as safe and permanent "repositories" for specimens which are costly and difficult to obtain--not to be either "picked up" or readily "housed" by everybody, and at the same time of real importance as "records." The first and most commanding duty of those who set up and maintain a public museum is to preserve actual things as records--records of the existence in this or that locality of each kind of plant and animal, records of the former existence of extinct plants and animals, with irrefragable certainty as to the locality and the exact strata in which they were found--records of prehistoric man, his weapons and art, and of the animals found with them, records of modern times. Everyone is familiar with this duty of the State and of local public bodies, when it is a matter of preserving written and printed records. They are preserved in various public offices and libraries, and are continually being studied by experts and copied in print, so as to furnish us with accurate knowledge of the past.
It is the first and leading business of museums to collect and preserve, with great accuracy as to the locality and circumstances in which each was found, the actual concrete things which are the records of nature, and of the various stages of man's art and industries in every region of the world, just as a library or the Record Office preserves manuscripts and printed documents and books. Collections of such specimens are often made by private individuals, and become too cumbersome for him or his heirs to keep in order. They are then frequently given to a public museum, and I regret to say in many provincial museums are neglected and become mere rubbish, even if they were not so when first given. Often such gifts are rubbish before they are received, and should never have been accepted. But in a great many instances the local museum of a country town is nothing but a rubbish-heap, because the townspeople will not spend the money necessary to obtain the services of a capable curator and to provide cases, labels, catalogues, and attendance. The town councillors usually know nothing about the museum or the value of the objects gathered there, and do not recognise the duty of making it an orderly and carefully tended storehouse of the records of Nature and antiquity of the neighbourhood. Too frequently the town museum is made the means of gratifying the vanity of some local collector, who hands over all sorts of ill-chosen, badly preserved specimens to its ignorant guardians, and is advertised by labels on the cases and by votes of thanks, whilst valuable records placed there in a previous generation are swept into a corner or broken and cast into the cellar in order to make space for the new rubbish!
Unless funds are found to place a specially educated man at the head of a local museum, the museum had better be shut, and such of its contents, as may be desired, offered to one of the big city museums or to the National Museum in London. It is no child's play, maintaining and guarding efficiently a museum which contains "records." It would be a good thing were a committee of naturalists and antiquaries to visit the local museums of the United Kingdom and report on the efficiency of their guardianship and the state of the treasures which they contain. I know two provincial museums very well in which extremely valuable records of prehistoric man and of wonderful extinct animals--found in the neighbourhood and preserved by those who established the museums fifty years ago--are utterly neglected and destroyed by loss of the labels and mixing up of the specimens, in consequence of the death of the persons originally interested in the museum and of the refusal of the town councils to find money to pay for the care of the collections. There can be little doubt that in the present state of local interest in such matters all really important record specimens should find their way to the British Museum in London, where, if accepted, their preservation, so far as it is humanly possible, is assured. That is the distinctive and most creditable feature of our great State-supported museum. At the same time it seems obvious that the records of a provincial area can be, and should be, kept in the county town museum, with a detail and completeness impossible elsewhere, and that it should be the pride of the county to be able to show to a stranger full records of the distinctive features of its natural history and antiquities.
It is clear that whatever failures in this respect may be inevitable in those hopelessly starved and mismanaged "museums" at present surviving to bear witness to the decay of public spirit and intelligent culture in our country towns, the prime duty of the great London museum is to preserve "records" with the greatest nicety and readiness for reference, whilst the duty of actively adding to these records from all parts of the Empire, and, therefore, of the world, and that of minutely studying and reporting upon the collections so obtained and guarded, follow as a matter of course. These collections are the absolutely necessary foundation for the building-up of our knowledge of Nature and of man. We can never say that this branch of scientific knowledge is valuable and that another is a mere fanciful pursuit. Every year it becomes more and more clear that unexpectedly some apparently insignificant piece of detailed scientific knowledge may become of value to the State and to humanity at large. Everyone knows that geology has a great practical value in mining, water supply, and various kinds of engineering, also that botany, as represented by the great State institution at Kew, is of immense value to those who introduce useful plants from one part of the world for cultivation in another. But of late we have seen that entomology--"bug-hunting" as it is scornfully termed--is a science upon which hang not only the revenue of an Empire, but also the lives of millions of men. Destructive insects must be known with the utmost accuracy in order to stop their injury to crops in the distant lands which they inhabit, and also in order to check the diseases carried by them which sweep off vast herds of costly cattle. The mosquitoes and the tsetze flies have been, only recently, proved to be the causes, the carriers, of diseases--malaria, yellow fever, and sleeping sickness--which annually have killed hundreds of thousands of men, colonists as well as natives. I was able to bring together at the Natural History Museum collections of mosquitoes from every part of the world, amounting to thousands of specimens and to some hundreds of kinds. The study of these and of the tsetze flies by skilled entomologists employed in the museum has been a necessary part of the steps now being taken everywhere to preserve human population from the attacks of certain deadly kinds among them, distinguished from the others which are harmless.
Thus, then, it seems that the first and most important purpose for which great "museums" exist is that of "the making of new knowledge"--the increase of science--by furnishing carefully gathered and preserved "specimens" of all kinds, and by working out the history and significance of those collections. But there is a second and distinct purpose which is often ignorantly put in the first place. It is of less importance and quite unlike the first in the methods necessary for its attainment, and yet is conveniently and satisfactorily carried out in conjunction with the first. This second and distinct purpose is the exhibition of such portions of the collections in a museum as are suitable for exhibition in public galleries, so chosen, arranged, lighted and labelled as to afford to the public at large the maximum of enjoyment and edification. This is, as it were, a readily accessible enjoyment given to the public in recognition of the large sums of public money expended on the severer and less easily appreciated enterprise of the museum. The public galleries of a museum, whether of natural history, antiquities or art, should not contain the bulk of the collection, but only special things, carefully selected, and equally carefully placed in case or on wall, with artistic judgment as to space-bordering and colour of background, and with scientific perfection of illumination, so as to produce the "just" impression on the leisurely visitor. The public "exhibit" should be arranged so as to draw attention to a series of important facts of structure or quality clearly shown by the specimens, whether they are natural products or works of art, and these facts should be described in printed labels fully, and the reason for attaching importance to them explained at sufficient length. The man who arranges the public galleries of a public museum, should have a special gift of exposition in plain language, and be able to separate the essential from the non-essential, the significant from the redundant.
It is important to make a complete distinction between an exhibition intended for the general public and that intended for advanced students in schools, colleges and universities. The confusion of these two kinds of exhibition is the cause of the failure of many museums and of the dislike with which most people regard a visit to them. The public museum--metropolitan or local--should not include in its purpose the "academic" instruction of schoolboys and university students. That requires a different kind of museum, which is provided by the school or university, though, of course, the students should also visit the more popular museums. The funds and staff and space required for the one are not sufficient for both. If both are attempted, the unpopular academic, or scholars', exhibition will get the upper hand and suppress the other, since it is a far easier thing to carry out successfully than is the carefully planned exhibition intended for the "edification" of the greater public. The university museum aims at imparting a much greater amount of detailed and elaborate information than does the great public museum, and requires from the student who uses it a special previous study of the subject, and an exceptional amount of attention and pains in examining the objects exhibited.
Too many of the public museums of Europe aim at the "instruction" of the special student rather than at the "edification" of the general public, whilst most aim at nothing at all except showing, without explanation or comment, a vast mass of specimens or pictures, at the sight of which the patient but bored public gapes with wonder. The public galleries of the Natural History Museum in London have been arranged more distinctly with a view to the edification of the public than those of any other museum which I know. But they still contain too large a number of specimens, and still require an immense amount of work in weeding, selection and labelling, and in deliberately making the specimens exhibited tell a tale which is worth remembering, and can be remembered. Except in the case of the larger specimens, and especially those of fossilized skeletons and shells of extinct animals, it must be remembered that the bulk of the specimens in that, as in every other large museum, are contained in cabinets protected from the destructive action of light, and arranged for the most part in rooms to which access is obtained only by serious workers after special application. The fishes and other animals preserved in alcohol are kept in a special fire-proof "spirit-building."
A provincial public museum, even if it does not aim at the guardianship of important local "records" of natural history and antiquity, should aim at the edification of the public--the grown-up public--and not at the instruction of school children. The notion that museums are meant for children, which exists, I am sorry to say, even in regard to so splendid and expensive a display of wonderful things as that to be seen at the Natural History Museum, is due to the bad tradition justified by the condition of other museums, where a child may enjoy being astonished, but a grown-up person can take in nothing which appeals to the intelligence. A new city museum is, it is reported, to be established at Birmingham. We may hope that it will not contain the usual unsatisfactory series of badly stuffed exotic animals, birds, and reptiles, and trophies of South Sea islanders' clubs and spears. It should contain first-rate specimens of the living and extinct fauna of Warwickshire, and specimens of foreign animals carefully selected to compare with them and throw light on them; also local prehistoric and antiquarian specimens, illustrated by comparison with the work of savage and remote races. The excellent suggestion has been made that it should contain specimens of the insect-pests of Warwickshire crops. It should also exhibit the minerals from which manufactories of Birmingham draw their metals, and should show the stages of their preparation. It should appeal, not to the boys and girls of Birmingham in the first place, but to the adults, and to do this it should be placed under the care of a really first-rate and ingenious man, who might possibly do for the Birmingham Museum what skilful arrangement and sound knowledge have done for its Art Gallery--an institution intended to appeal not to school children, but to the reasonable adult population of the city.
The principle of exhibiting permanently in public galleries a portion of our great national collections and of preserving another and larger portion in smaller rooms, where they can be more closely but not less carefully disposed and brought out into perfect light and position when required, should be applied to collections of pottery, metal-work, carving, embroidery and such objects, and also to pictures as well as to collections relating to natural history. The chief reason for this is the enormous space required in order to place permanently "on exhibition" all the objects contained in our national art collections, which are continually growing. The vast size of the galleries required, if the entire collections are to be exhibited so that the public may walk in and see anything and everything in it, permanently displayed on walls or in cases--entails gigantic and ever-increasing expenditure of public funds.
But this is not the only objection to these great galleries. The multitude of objects--it may be of pictures--exhibited creates a state of mind in the visitor which prevents his enjoyment of the works of art so exhibited. He is overwhelmed by the vastness of the series offered for his examination and confused and distressed by the close setting of things which require isolation and appropriate surroundings each in its own special way, if they are to be duly appreciated. Not only this, but pictures, as well as other works of art, are, in consequence of the necessity of placing them all in the great public galleries used for the purpose, rarely placed in the most favourable conditions of lighting, and are very often so ill-lighted as to lose all their beauty even if they are not nearly invisible. More public money would be available for the proper care and study of works of art were less spent on the land, building and up-keep necessary for huge galleries.
The desirability of separating a large unexhibited portion from the well-chosen and well-shown exhibited portion of works of art, exclusive of pictures, is, I believe, generally admitted. In the case of pictures the opinion has been expressed that there would be great difficulty in managing a reserved unexhibited portion of our national collections so that the pictures could be properly cared for and yet readily brought into view when required. One can well believe that a similar difficulty was anticipated when it was first proposed to keep books on shelves instead of on tables. Those who take this objection have overlooked the resources of modern engineering. Reserved pictures could be affixed in perfect security in appropriate groups on large screens, and these disposed, like the scenery above a stage, upright and in series, each screen 4 ft. distant from its neighbours. There could be three or four floors of such closely packed screens arranged in two rows, twenty in a row. On a lower floor there would be provided a room with the most perfect light possible for seeing, enjoying and studying a single one of these screens. They would all be numbered and the pictures on each catalogued. A person duly authorised and approved desires to see such and such a picture. He is given a seat in the special exhibition room. The attendant or assistant in charge touches the appropriate button, and by simple electric-lift machinery the screen upstairs carrying the desired picture travels automatically into position and then gently descends into the special exhibition room. There the other pictures on the screen may be, if it be so desired, covered by drapery, the light may be varied in intensity or direction, and, in fact, the most perfect examination of the picture in question may be made. When another button is touched, the picture-screen returns automatically to its place upstairs.
It seems to me that in the case of the growing collection of pictures known as "The National Portrait Gallery," this treatment would not only avoid the necessity of constantly providing new galleries for new acquisitions--but would enable the Trustees to separate those portraits, which are of more general interest and suitable for permanent exhibition in a good position, from less important portraits, which nevertheless must be acquired and preserved as public records. From time to time special groups of the reserved or unexhibited portraits might be put for six months in one of the public rooms--thus providing a change and variety of interest for the general public.
The same plan might be adopted with regard to the pictures in the National Gallery--though no doubt a large number of splendid pictures would be permanently placed in the exhibition rooms. Three things should be remembered in regard to the disposal of these pictures: Firstly, that not one in a hundred among them was intended by the painter to be hung in a gallery closely side by side with other pictures; secondly, that no picture should be exhibited in a public gallery unless it is worthy of the best lighting and surroundings; thirdly, that it is reasonable that the expert and the student should be asked to take some special trouble in order to see special pictures not on public exhibition, and that "the man in the street" who says that he likes to walk in and see all his pictures at any time and without any trouble, will value his collection more when he can only see some of it on special occasions.
The heavy and sometimes fragile character of the "frames" affixed to large pictures has been made an objection to the proposal that they should be fixed to screens moved by electric gear. I cannot venture to discuss the subject of picture frames here. I am aware that it is a very serious and important subject, and that a great deal of the effect of a picture depends on its being bordered by a frame of sufficient size and dignity and one which is really and artistically fitted to allow the finer qualities of the picture to become apparent. How often is such a frame seen? Who is there who has an adequate understanding of picture-frames as adjuncts to, or necessary accompaniments of, great pictures? The splendid carved and gilded wooden frames of some great pictures have a value of their own as examples of design. But how many of them are really suited to the picture which they surround? How much attention has been given by art experts to the question of the best possible "exhibitional" surroundings--nearer and more distant--for this, that and the other, among the great pictures of Europe?
THE SECRET OF A TERRIBLE DISEASE
This generation, which is so thankless to the great discoverers of the causes of disease, so forgetful of the epoch-making labours of the English sanitary reformers of last century, has not seen nor even heard of the awful thing once known as "gaol-fever." A hundred years ago it was as dangerous to the life of an unhappy prisoner to await his trial in Newgate as to stand between the opposing forces on a battlefield. Gaol-fever attacked not only the prisoners, but the judge and the jury and the strangers in the court. The aromatic herbs with which the hall of justice was strewn were supposed to arrest the spread of the terrible infection, and it is still customary to provide with a bouquet of such plants the judge who presides at a "gaol delivery." The inexorable ministers of justice, who, seated high above the common herd, and clad in their ancient robes of office, were about to deal shameful death to the guilty wretches brought from the prison cells, were often themselves struck down by the Angel of Death moving invisibly through the court. The "black assizes" were not isolated, but repeated occurrences in our great cities. Typhus fever was the name given by the learned to this awful pestilence. There was a mystery and horror surrounding it which paralysed those who came into contact with it, and produced something like consternation. Men fled in terror from the infected buildings, business was arrested, the universities deserted, palaces left empty, and the dying abandoned to their misery when it appeared. There was a feeling that some deadly unseen power was present, irresistible and malignant.
It is an interesting and really instructive thing to pass in review the gradual process by which the cleanliness of the population of Western Europe has advanced, and to observe that, consciously or unconsciously, the end pursued has been, step by step, the removal from man's body outside , from his clothing, from the water he drinks, from the food he eats, from the air he breathes, and from the surfaces with which he necessarily comes into contact, of injurious parasites and hurtful living things which lurk in dirt and rubbish. At first the larger and more obvious hurtful creatures--snakes, rats, mice, scorpions, blow-flies--were eliminated by some elementary attempts at removal of rubbish and kitchen middens. Then ticks and later fleas and bugs became unpopular; lice were long regarded as inevitable, and even beneficial, and by some populations and by part of the most civilised at the present day, are still, not merely tolerated, but favoured. In a country school in France a child who was found to be afflicted in this way was the daughter of the local medical practitioner. She remarked, "Oh! Ce n'est rien; papa dit que c'est la sant? des enfants"! Parasitic worms of various kinds, though they often cause disease and death, are accepted and tolerated even by the most refined and luxurious, who risk infection rather than submit to the precaution of abstention from raw vegetables and fruits, or to the expenditure of trouble in cleansing those nests of infective germs. It is only within the last thirty or forty years that such cleanliness of body and of clothing and of house-fittings as will banish parasitic insects has become at all general. The common house-fly is still tolerated, although it is a notorious carrier of dirt and disease, and is bred by dirt and dirt only, its eggs being hatched in old stable manure. The diminution of late years of house-flies in London houses is simply and solely due to legislation compelling the removal of horse manure from the "mews" so frequent at the back of London streets. Egyptian natives still allow flies to gather on their eyelids without protest.
Of the bacteria and similar microscopic germs of disease--to which all our infective fevers are due--we have only become aware quite recently, within the half-century. Before they were known, cleanliness and the destruction of putrescible matter in man's surroundings had, it is true, been urged by sanitary reformers. Disinfectants and antiseptics were deliberately made use of for this purpose in the mid-Victorian period, when carbolic acid and chlorinated lime were established in the place of those feebler destroyers of the germs of putrefaction and disease--namely, the extracts of aromatic herbs or the essential oils themselves. These, as perfumes and unguents, really served, not merely to gratify the olfactory sense, but to destroy by their chemical action the germs of disease. Men tolerated gnats and their bites until it was discovered that they, and they only, carry the parasitic germs of two deadly diseases--malaria, or ague, and yellow fever. Now we shall destroy the pools in which they breed, just as we are destroying the manure heaps in which the house-fly breeds. When we look over the list it is really astonishing how much remains to be done, even in England, in establishing increased cleanliness and freeing ourselves from the murderous tyranny of parasites. It is a simple but horrible fact that the poorest class in our big cities still swarms with vermin. And not only are the poor in great cities thus afflicted. The recent compulsory medical inspection of school children has shown that in some of the smiling rural districts of England 80 per cent. of the children have lice in their heads. Everyone should help to gain further cleanliness and freedom from this form of oppression.
In the middle of the nineteenth century, England alone, and with absolute conviction and determination, demonstrated to the civilised world the beneficial results in diminishing the death-rate of large towns, to be obtained by cleanliness, the destruction or removal from man's body and surroundings of organic "dirt," viz. his excreta, the exudations and exuviations of his body, the waste and fragments of his food. The names of Rawlinson, Chadwick and Simon remain as those of the prime movers in that legislation which has given us improved water supply, sewerage, removal of dust heaps, clearance of cesspits, cleansing of houses, and prevention of over-crowding. Yet there are writers who, in ignorance and infected with the modern madness which makes half-educated Englishmen presume to teach where they have yet to learn, and to pose as prophets by belittling and running down, without regard to truth, their own country and its finest efforts in the cause of civilisation, actually declare that Germany has led the way in this matter. This is the very reverse of the truth. Foreign countries are, in this matter, following long in the wake of England. There are no cities in the world so healthy as British cities. Practical measures of cleansing, faithful activity in destroying dirt and preventing over-crowding, enforced by legislation, have reduced the death-rate of our great centres of population in fifty years by more than one third--that is to say, from something like 29 per 1,000 to something like 18 per 1,000. No other country can show such a result.
Gaol-fever, spotted or putrid fever, or typhus fever has practically ceased to be a regularly occurring disease in the West of Europe. The last cases in London were, I well remember, in a poor district near the Marylebone Road about thirty years ago. A very few cases have appeared since, in the over-crowded and poorest districts of our largest cities. Beleaguering armies and beleaguered cities suffered from it as late as in the Crimean War, but we may now fairly say that it has disappeared from our midst. It, however, still abounds in Russia and her eastern provinces, and in Algeria, Tunis, and Morocco. It is a disease of cold and temperate climates rather than of the tropics.
In the last century typhus was distinguished definitely and clearly from "typhoid" or "enteric" fever, and from "relapsing" or "famine" fever, with which it had previously been confounded. The bacterial germs causing enteric and relapsing fevers are now known, and have been isolated and cultivated, and the mode in which they are conveyed into the body of a previously healthy patient is ascertained. But until the past year we knew neither the parasitic germ which causes typhus fever nor the mode by which it passes from one individual to another. A vague idea that it was spread through the air prevailed. Typhus is remarkable for the frequency with which the nurses and doctors attending a case become infected. About 20 per cent. of those attacked by it die, but in persons above forty-five years of age the mortality is much greater--about half succumb.
Dr. Nicole and his colleagues of the Institut Pasteur in Tunis have recently had the opportunity of studying typhus there. They found that the ordinary local monkey could not be made to take the disease. But a drop of blood of a typhus patient injected into a chimpanzee produced the disease after an incubation period of three weeks. This fact was definitely established. From what is now known as to relapsing fever, malaria, yellow fever, plague, and sleeping-sickness, it seemed probable that some migratory insect must be the carrier of the typhus infection from man to man. The typhus patients brought into the hospital at Tunis were carefully washed before admission, and no infection of other patients or nurses took place in the wards, although the cases were not isolated, and bugs were abundant. The only cases of infection which occurred were in persons who had the duty of collecting and disinfecting the clothing of the patients when admitted. This seems to exclude the bug as a carrier. The flea is excluded by the fact that in the phosphate mines of Tunis the flea is abundant, and bites both natives and Europeans. Yet when typhus fever broke out among the miners--although all were equally bitten by the fleas--no European was infected. The indication, therefore, was that if any insect is the carrier, it is neither the flea nor the bug, but probably the clothes-louse. Although the smaller monkeys cannot be directly infected with typhus fever from man, it was found that the bonnet monkey was susceptible to the infection after it had passed through the chimpanzee. Experiments were, therefore, made with clothes lice taken from a healthy man, and kept for eight hours without food. They were placed on a bonnet monkey which was in full typhus eruption. A day afterwards they were removed to healthy bonnet monkeys with the result that the healthy bonnet monkeys developed typhus fever. There is thus no doubt whatever that typhus fever can be carried in this way from bonnet monkey to bonnet monkey. The whole history of typhus fever fits in with the carriage of the infection in the same way from man to man, and not with the notion of an a?rial dispersion of the infection.
The fact that typhus only exists in very dirty and crowded populations, and that it has disappeared where even a moderate amount of cleanliness as to person and clothing has become general, coincides with the possibility of the body louse as carrier. This little parasite is known to be a wanderer, and is gifted with a very acute sense of smell. An individual placed in the centre of a glass table invariably walked, guided by the scent, towards the observer, at whatever position he placed himself. Sulphurous acid is a violent repellant of these creatures. Not only will it kill them if they are exposed to its fumes, but traces of it drive them away. Hence doctors and nurses who have to handle typhus patients or their clothes have only to wear a small muslin bag of sulphur under their garments, or to rub themselves with a little sulphur ointment in order to be perfectly guarded against infection; the louse will not approach them, nor remain upon them should it accidentally effect a lodgment.
It is not always obvious at once in what way a knowledge of the mode of carriage of a deadly disease can be of service to humanity. But in this case it is strikingly and triumphantly clear. In the vast poverty-stricken population of Russia typhus is still common. Public medical officials attend these cases, and the Russian Government keeps a record of the annual deaths of its medical staff, and of the causes of their deaths. In the first six months of last year 530 Russian medical officers died, and twenty-four of these deaths were caused by typhus fever acquired by these devoted public servants in attendance upon cases of that fever. Henceforth they will make use of sulphur or sulphurous ointment to keep the little infection-carriers at a distance, and not one medical man or nurse will catch the disease, still less be killed by it.
CARRIERS OF DISEASE
It has now been discovered that a great number of human diseases are caused by microscopic parasites, which are spoken of in a general way by the name invented by the great Pasteur, viz. "microbes." Wool-sorter's disease, Eastern relapsing fever, lock-jaw, glanders, leprosy, phthisis, diphtheria, cholera, Oriental plague, typhoid fever, Malta fever, septic poisoning and gangrene have been shown to be caused each by a peculiar species of the excessively minute parasitic vegetables known as bacteria . Others, for example, malaria and sleeping sickness, have been shown to be caused by almost equally minute microbes, which are of an animal nature, and similar to the free-living animalcules which we call Protozoa, or "simplest animals," whilst a third lot of diseases--rabies, smallpox, yellow fever, scarlet fever, and typhus--are held to be caused by similar minute parasites, although these have not yet actually been seen and cultivated, but are surely inferred to exist.
The difference of the microbes called bacteria from the disease-causing microbes classed as "Protozoa" consists in their simpler structure and mode of growth. They are essentially filaments which continually multiply by fission--a process often carried so far that the little organisms present themselves as short rods, or as curved , or even spherical particles --and only in favourable conditions arrest their self-division so as to grow for a time into the thread-like or filament shape. Often these filaments are not straight, but spirally twisted, and are called "spirilla." Some of them are blood parasites, but the larger number attack the tissues, and others occur in the digestive canal.
The parasitic disease-producing protozoa, on the other hand, are of softer substance, often have the habit of twisting themselves in a corkscrew-like manner, and usually are provided with an undulating membrane or frill, as well as with one or with two whip-like swimming processes , and have a more complicated life-history. They divide, as a rule, longitudinally and not transversely, and pass from one "host" to a second, where they assume distinct forms--males and females, which conjugate and break up into a mass of very numerous, excessively minute, young. The disease-producing protozoa of this kind are frequently parasitic in the blood of man and animals, and were only recently recognised, after the disease-producing bacteria of many kinds had been thoroughly studied. These animal microbes are often spoken of as "blood-flagellates" or haemo-flagellata, and the larger kinds are called "Trypanosomes," or "screw-form parasites," or whilst a series of more minute ones are called "Piroplasma," or "pear-shaped parasites." Many, but not all, are found during a certain period of their life, actually inside the corpuscles of the blood. The fact that many of these blood-flagellates have, besides their life in the blood of one species of animal, a second period of existence in the juices or the gut of another animal, has made it very difficult to trace their migrations, since in the second phase of their history their appearance differs considerably from that which they presented in the first. And often they exist in one kind of animal without doing any harm, and are only poisonous when introduced by insects into the blood of other kinds of animals!
There is, further, another set of disease-causing protozoan parasites which are similar to the amoeba or proteus-animalcule, and a third, which belong to the group of "ciliated infusoria." They are not so minute as the preceding set, and are not usually referred to as "microbes." They inhabit the intestine of man and animals, and cause, in some instances, dysentery. These two later kinds of protozoan parasites I will at the moment leave out of consideration, as well as the "coccidia," which multiply in the tissue-cells of animals--for instance, rabbits and mice--and cause an unhealthy growth and excessive multiplication of the cells of the tissues, which in some respects resembles that seen in the terrible disease known as cancer. Indeed, it is held by many investigators that some such parasite--though not yet discovered--is the cause of cancer.
A very important question is: How do these poison-producing parasites make their way into the human body? The surface of the body of animals, like man, is protected by a delicate, horny covering--the epidermis--through which none of these parasites can make their way. They can only get through it, and so into the soft, juicy tissues and the fine blood-vessels which it covers, when it is cracked, broken, pierced, or cut. But they also have a way to open them through the softer moist surfaces of the inner passages, such as the digestive canal and the lungs. They enter with food and drink into the digestive canal, and with the air into the air-passages and the lungs; and once in these chambers, which have only soft lining-surfaces, they are able to penetrate into the substance of the body. Many of those which enter the digestive canal do not require to penetrate further, but multiply excessively in the contents of the bowel, and there produce poisons, which are absorbed and produce deadly results--such are the bacteria which produce Indian cholera and ordinary diarrhoea--whilst the kind causing typhoid fever not only multiplies in the gut, but penetrates its surface.
The protective surface of man's body is broken, and the way laid open for the entrance of microbes in various ways. A slight scratch, abrasion, or even "chapping" is enough. Thus, a mere breaking of the skin of the knuckles by a fall on to dirty ground lets in the deadly bacterium of lock-jaw , which is lurking in the soil. Leprosy is communicated from a leper in the same way. The almost ubiquitous bacteria of blood-poisoning may enter by the smallest fissure of the skin, still more readily by large cuts or wounds. The bites and stabs of small and large animals--wolves, dogs, flies, gnats, fleas and bugs, also open the way, and often the deadly microbe has associated itself with the biting animal and is carried by it, ready to effect an entrance. Thus rabies is introduced by the bites of wolves and dogs, and a whole series of diseases, such as plague, malaria, sleeping-sickness, gaol-fever , yellow fever, relapsing fever, and others, are introduced into the human body by blood-sucking insects. Hence the immense importance of treating every slightest wound and scratch with chemicals , which at once destroy the invading microbe--and of keeping a wounded surface covered and protected from their approach. In ways at one time unsuspected, such openings may be made by which poisonous microbes enter the body. Thus the little hard-skinned parasitic thread-worms which are often brought in by uncooked food into man's intestine, though by themselves comparatively harmless, scratch the soft lining of the bowel and enable poison-making microbes to enter the deeper tissues, and cause dangerous abscesses and appendicitis.
The carriers of disease germs thus become a very important subject of study. There are carriers which make no selection, but are, so to speak, "casual" in their proceedings, and there are others which have the most special and elaborate relations to some one kind of disease-causing microbe for which alone they are responsible, and to the life of which they are necessary. Let us look first at the more casual group. Man himself is a great carrier and distributor of his own diseases. Unless and until he has learned to be careful and guard against thoughtless proceedings, he is always spreading the microbes of his diseases and passing them on to his fellow men. He pollutes the waters, rivers, lakes, and pools from which others drink. He manures his crops, and then eats some of them uncooked. His hands are polluted by disease-causing microbes, and he handles the food, such as bread and fruit, which is swallowed by his fellows, without cleansing it by heat. It has lately been shown that apparently healthy men and women often harbour within them the microbes of typhoid fever or of cholera , without themselves suffering in health, and that unsuspected they thus become distributing centres of these diseases. The names "typhoid carrier" and "cholera carrier" have actually been introduced to describe the condition of such persons. Then, again, by his breath, and by coughing and spitting, a man acts as a carrier to others of disease-microbes already lodged in him, as well as by actual contact in the case of those infections which are called "contagious." The numerous animals which surround and are associated with man act very largely as casual carriers and distributors of disease microbes. Thus dogs and even the cleanly cat are frequently carriers of disease. But more especially those creatures which visit man's food stores and food ready for consumption are active carriers. Rats and mice run over such stores and pollute them. But the most widely active in this way is the common house-fly.
Whilst white men have developed an almost automatic resistance and objection to the visits of flies to their lips, eyelids, and any wound or scratch of the skin--a resistance which is not shown by many savage races--they yet allow house-flies to swarm in their dwellings, to run about and sample their food, with an indifference which is, when the truth is known, truly horrible in its fatuity and foolhardiness. For the fact is that the feet and proboscis of the common house-fly are covered with microbes of all sorts, picked up by his explorations upon every kind of filth. At every step which he takes he plants a few dozen microbes, which include those of infantile diarrhoea, typhoid, and other prevalent diseases. This is easily shown by allowing him to walk over a smooth plate of sterilised nutritive gelatine and preserving it afterwards free from the access of microbes from the air. In twenty-four hours every footstep of the fly on the gelatine is marked by an abundant and varied crop of microbes, which have multiplied from the individuals let drop by the little pedestrian. There is no doubt whatever that the house-fly is a main source of the dissemination of the microbe of infantile diarrhoea, and the cause annually of hundreds of thousands of deaths of children in the great cities of Europe and America. Also in camps and infected districts he is largely responsible for the introduction of the microbe of typhoid fever into the human food to which he has free access after his previous visits to open latrines. The house-fly is himself a product of dirt and neglect. The eggs are laid in old manure heaps and kitchen middens, and the maggots, which eventually are transformed into flies, nourish themselves in those accumulations. When this refuse is rapidly and regularly removed by the care of the sanitary officials of a town, the flies diminish in number, as they have diminished in London within the last thirty years. We no longer are overrun by flies in London in the summer months. The man selling sheets of sticky paper is no longer heard in our streets calling "Catch 'em alive, oh!" But in country places, where a neglected stable-yard is near the dining room of the inn, house-flies are as great a nuisance and danger as ever. There is no difficulty, if the simplest rules of cleanliness are observed, in abolishing them altogether from human association, but combined and simultaneous action against them is an essential condition of success.
IMMUNITY AND CURATIVE INOCULATIONS
During the last twenty years the whole attitude of the study and investigation of disease-causing microbes has advanced from the preliminary step of merely identifying certain microbes as the causes of certain diseases to a further step, viz. that of attempting to defend the animal and the human body against their attacks in the manner already so finely started by Pasteur. For many years disease after disease was examined and found to be caused by special bacteria or other microbes. Even non-infectious diseases or diseases only communicable under very special conditions were found to be due to microbes, so that it is probable that all disease that is not due to congenital malformation or to mechanical injury, or to poison fabricated in the weapons of larger animals and plants, or by man himself, is due to microbes. "Life," says Lord Justice Moulton, "is one ceaseless war against these enemies, and the periods of our too-transient successes are known as health." One of the last diseases traced to microbes is that sad condition known as "infantile paralysis," by which so many of the brightest and best members of the community have been crippled, from childhood onwards, through life.
Of late we have been making rapid strides in arriving at a knowledge as to how Nature herself protects higher creatures from the excesses and exuberance of destructive microbes, and we are now able to see that it is in adopting her methods that our best hope of increasing that protection lies. Nature is satisfied if the efficacy of her defence is sufficient to save enough individuals to carry on the race. Man desires in the case of his own fellows to out-do Nature and to save all.
A century and a half ago, before the true character of infective disease was understood, it was observed that an individual who was attacked by the smallpox and recovered became incapable of receiving the infection again. He was "protected" or "immune." The practice of "inoculation" was introduced from the East by Lady Montague. The infectious matter was introduced from a smallpox patient into the person to be protected by rubbing it into a scarified part of the skin. A much less severe attack of smallpox was thus produced than that which usually followed the natural infection, which is more widely spread through the blood. At the same time the condition of "immunity" after the attack was brought about with equal efficacy. When Jenner introduced inoculation with "cowpox" for the purpose of establishing "immunity" in the vaccinated person, inoculation with smallpox itself was a very usual practice. It was open to the objection that sometimes an unexpectedly violent attack of the disease was produced, resulting in death, and that the active infection was kept alive and ever present in the community. The notion with regard to the mode in which "immunity" was produced by either the Montacutian or Jennerian inoculation was, even after the general knowledge of microbes as the living contagion of disease had been arrived at, that the mild attack due to inoculation "used up" something in the blood--in fact, exhausted the soil, so that the infective matter or microbe could no longer flourish in the blood. And this view was accepted as the explanation of the "immunity" to the anthrax disease conferred on cattle and sheep by Pasteur's inoculations of weakened, but still actively growing, cultures of the anthrax bacillus. Another theory was that they produced something in the blood by their own life-processes which checked their further growth, just as yeast will not grow in wort in which it has produced 8 per cent. of alcohol, and as a fire may be choked by its own smoke or ashes.
We now know that both these explanations of "immunity" are incorrect. Nature provides at least three varieties of defence within the blood of higher animals against disease-producing microbes which have broken through the outer line of fortification, the skin. These three methods are effective in different cases , and, on the whole, are sufficient to preserve the races of animals from complete destruction. These are the production in the blood of an antidote to the toxin or poison elaborated by the invading microbe--an antitoxin, which chemically neutralises the toxin; the production in the blood of the attacked animal of a "germicidal" poison which repels and kills the attacking microbes themselves ; the extermination of the intrusive, disease-producing microbes by a kind of police, which scour the blood channels and tissues and "eat up"--actually engulf and digest--the hostile intruders. These latter agents, actual particles of the living animal in which they exist, are the "eater-cells," or "phagocytes"--minute, viscid, actively moving cells, resembling the animalcules called "amoeba." They are only the one two-thousandth of an inch in diameter, and are known as the white or colourless corpuscles of the blood. They are far less numerous than the red blood-corpuscles, which are the agents for carrying oxygen, but there are eight thousand million of them in a large spoonful of blood. They are the really important agents in protecting us from microbes, since they not only engulf and digest and so destroy those intruders, but it is probable that they also are the manufacturers of the antitoxins and of the germicidal poisons.
If these three defensive processes given us by Nature are in working order, that is to say, if we are "healthy," they should secure to us a sufficient "immunity"--at at any rate, "recovery"--from any attack of disease-producing microbes. But they are not in "unselected," widely ranging mankind always equal to their task.
The attempts to produce immunity by vaccination with weakened or localised disease germs is really an attempt to train and develop to a high point the activities of the phagocytes or eater-cells of the blood.
The introduction of antitoxins by injection of them into the blood is an attempt to bring to the rescue of a patient who would sooner or later produce his own antitoxins the similar antitoxin obtained from the blood of another animal which has been artificially made to produce in its blood an excessive quantity of that substance.
Mithridates, King of Pontus, was, according to ancient legend, in consequence of his studies and experiments, soaked with all kinds of poisons to which he had become habituated by gradually increasing doses, and he had at last reached a condition in which no poison could harm him, so that when he was captured by the Romans and wished to kill himself , he wept because he was unable to get any poisons which would act upon him. He was "immune" to all poisons. This real or supposed immunity resulting from the introduction into the living body at intervals of a series of doses of a poison gradually increasing strength has been called "Mithridatism," and animals and men so treated have been said to be "mithradatized." The toleration of poisonous drugs--such as tobacco and alcohol, and even of mineral poisons, such as arsenic--was, until lately, regarded as merely a special exhibition of that habituation of "adaptation by use" which living things often show in regard to some of the conditions of their life. Unusual cold, unusual heat, unusual moisture, salinity or the reverse, unusual deprivation of food, unusual muscular effort may be tolerated by animals without injury provided that they have been "gradually accustomed" to the unusual thing, or, in other words, that the unusual has been gradually made the usual; so that there is a saying that eels after a time even get used to being skinned. There was no attempt to explain the details of this process of habituation; it was assumed to be a part of the general "educability" of living matter.
The study of the education of living matter, in regard to various conditions which can act upon it, has yet to be further carried out, but the way in which the poisons made by disease germs and the like, and the disease germs themselves, are dealt with in the blood and tissues has, on account of its urgent importance, from a medical point of view, been already profoundly studied by experimental and microscopic methods of late years. The old notion as to "mithridatism" was that an animal or a man would have to be separately prepared and "immunised" by habituation for every distinct kind of poison. We now know that this is not the usual way in which Nature confers immunity to poisons. Most astonishing, and at first sight magical or mysterious, powers exist in the living protoplasmic cells in and around the blood of man and higher animals, which enable their possessors to resist and combat the poison-producing microbes, and also the poison itself, of all kinds, by which the race is liable to be attacked.
Few of us realise what a wonderful and exceptional fluid the blood of a higher animal is. The Australian natives attach so little importance to it that they actually cut themselves and use their blood as a sort of paste for sticking decorative feathers on to a pole! The Papuans are more advanced, since they regard the flow of blood from a cut or graze as an evil portent. And some respect to the greatness and wonder of blood is shown by those persons among civilised peoples who faint when they see blood, or even at the mention of its name! This stream of red fluid within us courses at a tremendous rate from the heart through all the endless branches and networks of arteries, capillaries and veins, and back to the heart. It feeds, cleanses, warms and takes "vital air" dissolved in it to every particle of our bodies, fresh and fresh at every pulse-beat as it rushes on. It not only absorbs crude digested food through the walls of the gut, but conveys it to where it is worked up and distributes the worked-up product. It removes the quickly used-up substances from every part, and the choke-damp or carbonic acid which would stop the whole machine, and kill us, were it not got rid of through the lungs as the blood hurries through the walls of these air-sacs, whilst other used-up materials are carried by it to the kidneys and passed out of the body through them. Every part of the body is brought into common life with every other part by this impetuous blood-stream--which is here, there, and everywhere, right round, and back again, in twenty-five seconds! It is obviously a very serious thing if a poison-producing microbe gets into this blood-stream and multiplies within it, or if poison-producing microbes lodge somewhere beneath the skin in a wound, and keep on discharging virulent poison into the blood! The mischief is spread all over the body at once.
It is not surprising, then, that the long course of natural selection and survival of the fittest has resulted in the fixing in the blood and the living cells immediately connected with it of extraordinary protective powers. The floating scavenger cells are already found in the blood of quite simple animals in worms, shell-fish and insects. I have watched them with the microscope at work in transparent minute living water-fleas eating up, and digesting microbes which had got into the water-flea's blood. In higher animals what we call "inflammation" is a condition--the result of a new and advantageous mechanism--which consists in a local retarding of the blood-current, effected by the action of the nerves on the muscular walls of the blood-vessels, and the consequent escape of the eater-cells into the injured or infected tissue, there to eat up and destroy the injurious microbes or other particles. Special and remarkable properties--chemical activities of an extraordinary character--have been gradually developed in the floating phagocytes and in similar non-floating fixed cells over which the blood flows.
If the phagocytes and similar cells in the blood of a man or animal exposed to the poison produced by localised microbes cannot produce enough antitoxin so as to quickly destroy the poison, we can, and do, nowadays, save his life, by injecting into his blood the required antitoxin, obtained from another animal which we have caused to produce the antitoxin in excess. That is one sort of "immunity" or "resistance" which we can confer, and is largely in use at the present day--the "antitoxin" treatment.
Add to tbrJar First Page Next Page