bell notificationshomepageloginedit profileclubsdmBox

Read Ebook: Man And His Ancestor: A Study In Evolution by Morris Charles

More about this book

Font size:

Background color:

Text color:

Add to tbrJar First Page Next Page Prev Page

Ebook has 373 lines and 55425 words, and 8 pages

Highly interesting examples of these varied results may be seen in the existing anthropoid apes. In all of them it would appear that the arm was a prominent factor in locomotion, for in each instance it is longer than the leg,--but it differs in proportional length in every instance. It is shortest in the chimpanzee, somewhat longer in the gorilla, still longer in the orang, and remarkably long in the gibbon. In all these instances the fact that the arms exceed the legs in length indicates that they must have played a large and important part in the work of locomotion, and especially so in the case of the gibbon. It is well known, in fact, that the gibbons progress very largely by the aid of their arms, swinging from limb to limb and from tree to tree with extraordinary strength and facility. The legs lend their aid in this, but the arms are the principal organs of motion, and seem to have developed in length accordingly.

As regards the other anthropoid species, Wallace's observations on the habits of the orang are of interest. This animal usually walks on all fours on the branches in a semi-erect crouching attitude, but our naturalist saw one moving by the use of its arms alone. In passing from tree to tree the arms come actively into play. The animal seizes a handful of the overlapping boughs of the two trees and swings easily across the intervening space. While seeming to move very deliberately, its actual speed was found to be about six miles an hour.

The organization of man, as he now exists, shows an interesting and important deviation from that of the manlike apes, and one which serves as strong evidence that none of these apes occupied a place in his line of descent. This is that he is a long-legged and short-armed animal, a condition the reverse of that seen in the anthropoid apes. While man's hands reach barely to the middle of the thigh, those of the chimpanzee reach below the knee, of the gorilla to the middle of the leg, of the orang to the ankle, and of the gibbon to the ground. All these apes have short legs and long arms. Man, on the contrary, has long legs and short arms.

The natural presumption from this interesting fact is that man's ancestor, which we may provisionally call the man-ape, differed essentially in its mode of progression from the other apes. The smaller forms of these usually move on all fours in the trees, though the arms are always ready for a swing or a climb. The anthropoid apes also show a tendency to a similar mode of progression, though with a difference in their mode of walking, which, as we shall see later on, is never that of the quadruped. As for the man-ape, it may have originally walked in the same manner as the related species, if we surmise that the variation in the length of the limbs was a subsequent development. Certainly after its limbs attained the proportions of those of man, its facility of swinging from tree to tree must have been diminished, while it would have found it inconvenient to move in the crouching attitude of the orang and its fellows. Its easiest attitude must then have been the erect one, and its motion a true biped walk, not the swinging and jumping movement of the other anthropoids. In short, the development of man's ancestor into a short-armed animal, however and whenever it took place, could not but have interfered seriously with its ease of motion in the trees. Though this change may have begun in the trees, it probably had its full development only after the animal made the ground its habitual place of residence.

It is of interest to find that all the existing large apes are arboreal, the gorilla being the least so, probably on account of its weight. Though they all descend at times to the ground, their awkward motion on the surface shows them to be out of their element, while they move with ease and rapidity in the trees. The organization of man renders it questionable if his primeval ancestor was arboreal to any similar extent. The indications would seem to be that it made the ground its habitual place of residence at an early period in its history, and that the result of this new habit and of its erect attitude was a change in the relative length of its limbs.

That this animal dwelt mainly in trees in the first stage of its existence, and possessed a powerful grasping power in its hands, we have corroborative evidence in recent studies of child life. The human infant, in its earliest days of life, displays a remarkable grasping power, being able to sustain its weight with its hands for a number of seconds, or a minute or more, at an age when its other muscles are flabby and powerless. It appears in this to repeat a habit normal to the ancestral infant, an instinct developed to prevent a fall from its home among the boughs.

Yet it is doubtful if the man-ape long remained a specially arboreal animal. The varied length of arm in the anthropoid apes was doubtless of early origin, and in all probability man's ancestor had originally a shorter arm than its related species. If so, this must have rendered it less agile in trees than other forms. If we could see this ancient creature in its arboreal home, we should probably find it more inclined to stand erect than the other apes, walking on a lower limb, and steadying itself by grasping an upper limb. This would be a more natural and easy mode of progression to a short-armed animal than the crouching attitude of the orang or the swinging motion of the gibbon, and its effect would be to make the erect attitude to a large extent habitual with this animal.

In short, man's ancestor may have become in considerable measure a biped while still largely a dweller in the trees, and to that degree set its arms free for other duties than that of locomotion. Like the other apes, it probably often descended to the ground, where its habit of walking erect on the boughs rendered the biped walk an easy one, or where this habit may have been originally acquired. While this is conjectural, it is supported by facts of organization and existing habit, and for the reasons given it seems highly probable that the ancestor of man took to a land residence at an early period in its history, climbing again for food or safety, but dwelling more and more habitually on the earth's surface. Even at this remote era it may have become essentially human in organization, its subsequent changes being mainly in brain development, and only to a minor extent in physical form and structure.

Fossil apes have not been found farther back than the Miocene Age of geology. It is quite probable, however, that they may yet be found in Eocene strata, since examples of their highest representatives, the anthropoid or manlike apes, have been found in Miocene rocks. The fact that these large apes are now few in number of species, is no proof that many forms of them may not have formerly existed, and among these we may class the ancestor of man.

THE FREEDOM OF THE ARMS

Man's ancestor is by no means the only form of ape that has made the earth's surface its place of residence. The baboon is one example of a number of forms that dwell habitually upon the ground, though they have not lost their agility in climbing. But these species have returned to the quadruped habit, to which the equal length of their limbs adapts them. All the anthropoid apes dwell to some extent upon the ground, but these can neither be called quadrupeds nor bipeds, their usual mode of progression being an awkward compromise between the two. The same may be said of one of the lemurs, the propithecus, the only member of its tribe that attempts to move in the erect attitude. It does not walk, however, but progresses by a series of jumps, its arms being held erect, as if for balancing.

Of the apes, though many can stand upright, the gibbon is the only one that attempts to walk in this position. This is a true walk, though not a very graceful one. The animal maintains a fairly upright posture, but walks with a waddling motion, its body rocking from side to side. Its soles are placed flat on the ground, with the great toes spread outward. Its arms either hang loosely by its side, are crossed over its head, or are held aloft, swaying like balancing poles and ready to seize any overhead support. Its walk is quickly changed to a different motion if any occasion for haste arises. At once its long arms are dropped to the ground, the knuckles closed, and it progresses by a swinging or leaping motion, the body remaining nearly erect, but being swung between the arms.

None of the other anthropoid apes ever walk erect, though they assume at times the upright posture. But though they use all their limbs as walking organs, they show no tendency to revert to the habit of the quadrupeds. Their motion is like that of the gibbon when in haste, a series of jumps or swings between the supporting arms. The shortness of their arms, however, prevents them from standing erect, like the gibbon, in doing this; and they bend forward to a degree depending on the length of their arms, the chimpanzee the most, the orang the least.

As a rule, the flat sole of the foot is set on the ground, with the toes extended, as in man, but the toes are sometimes doubled under in walking. The orang rarely touches the ground with the sole or the closed toes, but walks on the outer edge of the foot, the feet being bent inward as if clasping the rounded sides of a bough. The other species have a tendency in the same direction, the legs being bowed and the gait rolling. In using the hands in walking, the closed knuckles are usually placed on the ground, though occasionally the open palm is employed. The whole movement of these animals is strikingly awkward, and goes to indicate that there can be no satisfactory compromise between life in the tree and on the ground.

The significant fact in these attempts to walk is that none of the anthropoid apes show any inclination to revert to the quadruped habit. Their attitude is in all cases an approach toward the erect one, which posture is attained by the gibbon. The arms are used not as walking but as swinging organs. Evidently their mode of life in the trees has overcome all tendency toward the quadruped motion in these apes and developed a tendency toward the biped. But none of them have gained the muscular development of the leg known as the calf, nor an adjustment of the joints to the erect attitude, since none but the gibbon walks erect, and it does so only at occasional intervals.

The conclusion to be derived from all this is that the man-ape was in its early days much more truly a biped than are any of the species named. Like them, it had no tendency to revert to the quadruped habit. The shortness of its arms was unsuited to this, while rendering it impossible for the animal to progress in the semi-erect, swinging fashion of the other anthropoid apes. As a result of its bodily formation, it may have begun to walk erect at a very remote date, with a consequent straightening of the joints and muscular development of the legs. When this condition was fully attained, it was practically a man in physical conformation, though mentally still an ape, and with a long development of the brain to pass through before it could reach the human level of mind.

The far-reaching conclusions here reached are all based on one important fact, the shortness of man's arms as compared with the disproportionate length of arm in the anthropoid apes. This, for the reasons given, rendered the adaptation of the man-ape to life in the trees inferior to that of the long-armed apes; while, as has just been said, it unfitted it to walk on the ground either as a quadruped or in the jumping method of its fellow anthropoids. In short, the biped attitude was much the best suited to its organization and the one it was most likely to assume. This once adopted as its habitual posture, efficiency in walking would be gained by practice.

When once this animal became a ground walker, its facility of motion in the trees was in a measure lost. When the feet became accustomed to the flat surface of the ground, they became less capable of grasping the rounded surface of the bough. Fitness to the one situation entailed loss of fitness to the other. The feet of the apes can clasp the bough firmly, by curving around its opposite sloping sides, and to this these animals doubtless owe their bowed legs and their disposition to walk on the outer edge of the foot. This disposition the man-ape lost as its foot fitted itself to the surface of the ground. It was probably retained in a measure by the young, after it had been lost by the mature form, and is still manifested in the position of the foot in the human embryo.

These considerations bring us to an important question: Why did the man-ape gain a length of arm not the best suited to its arboreal habitat? Why, in fact, do changes in physical structure ever take place? How does an animal succeed in passing from one mode of life to another, when during the transition period it is imperfectly adapted to either, and therefore at a seeming disadvantage in the struggle for existence? The study of animal development has given rise to certain difficult problems of this character, some of which have been solved by showing that the supposed disadvantage did not arise, or that it was balanced by some equal advantage. In this way a considerable gap in life conditions has perhaps occasionally been crossed. Small gaps have doubtless been frequently passed over in the same manner.

In the case of the anthropoid apes, we perceive a considerable variation in the length of the arms, from the very long arms of the gibbon to the comparatively short ones of the chimpanzee. These differences are probably the result of some difference in their life habits, and accord with the possibility of a still shorter arm in the man-ape. There is, however, some reason to believe, as we shall show later on, that the arm of this animal was longer and the leg shorter than in man himself, their comparative length perhaps not differing greatly from that of the chimpanzee. Aside from all other considerations, the use of the legs as the sole organs of locomotion could not well fail to produce this result, the legs growing longer and stronger in consequence of the increased duty laid upon them, and the arms growing shorter and weaker through their release from duty in locomotion. The case does not differ in character from those of the dinosauria and the kangaroos, in both of which instances a release of the arms from duty in walking was followed by a considerable decrease in length and strength, while the legs grew proportionally stronger.

If any disadvantage attended the shortening of the arms of the man-ape, to the extent that this may have taken place in the tree, it was probably correlated with some advantage. In the various instances of short-armed animals cited this appears to have been the case, and it was probably so in man's ancestral form. While the hands continued useful in grasping and enabling the animal to maintain its place on the boughs, they may have been gradually diverted to some other service, with the result that the animal found the tree less desirable than before as a place of residence and sought the ground instead. This would be particularly the case if the new duty was one best exercised upon the ground.

Shall we offer a suggestion as to this new use? Such changes are usually the result of some change of habit in the animal, frequently one that has to do with its food. Change of diet or of the mode of obtaining food is the most potent influencing cause of change of habit in animals, and the one that first calls for consideration.

The apes are frugivorous animals, though not exclusively so. Carnivorous tendencies are displayed by many of them. They rob birds' nests of their eggs and young, they capture and devour snakes and other small animals. In zo?logical gardens monkeys are often observed to catch and eat mice. It is evident that many of them might readily become carnivorous to a large extent under suitable conditions. The large apes are usually frugivorous, but some of them eat animal food. This is the case with both the chimpanzee and the gorilla. The latter, while living usually on fruit and often making havoc in the sugar-cane plantations and rice-fields of the natives, also eats birds and their eggs, small mammals and reptiles, and is said to devour large animals when found dead, though it does not attempt to kill them for food. The young gorilla which was kept in captivity at Berlin became quite omnivorous in its diet.

With all this readiness to eat animal food, none of the existing apes are carnivorous to any large extent, but the fact of this inclination makes it not improbable that some of the apes of the past may have been much more so. It is quite within the limits of probability, for instance, that the man-ape at an early date became omnivorous in its diet. Its change in structure may well have been the result of a decided change in diet, such as that from fruit to flesh food. Such a radical change as that from vegetable to animal food would certainly demand a more active employment of the arms as agents in capture. Fruits and nuts wait to be pulled; animals must be caught before they can be eaten. The former is an easy matter to an arboreal animal; the latter might prove a difficult one, especially if large animals were to be captured.

In short, the pursuit and capture of any of the larger animals for prey could not fail to modify to a great degree the use of the arms. Their employment in locomotion would interfere seriously with their utility in this direction. To succeed in capturing nimble prey by an animal with the ape form of hands a considerable freedom of the arms would be necessary, and the feet would have to be mainly, if not wholly, depended upon for motion. The ape has not the sharp claws of the carnivora with which to seize and hold its prey. It must have been obliged to use its palms for this purpose, and this it could not well have done unless they were free in their action.

It is conceivable, indeed, that the man-ape may have run down its prey, or sprung upon it from covert, and seized it with the hands, but there is good reason to believe that this was not its mode of capture. The organization of the ape tribe gives it a characteristic action which is not to be found in any other group of the vast animal kingdom, that of handling and throwing missiles. In this it necessarily stands alone, since no other animal has a grasping palm. The power is one of prime importance, for without it we cannot perceive how man could ever have emerged from the general animal kingdom. The use of missiles is by no means uncommon with the monkeys. We cannot safely accept the story that American monkeys will throw cocoanuts from tree-tops at those who hurl stones at them from below, from the fact that the cocoanut seems too heavy and too firmly fixed to its support for the strength of those small species, but it is not uncommon for them to throw lighter objects. Yet in doing this they usually seem to have no idea of aim, but toss the missile aimlessly into the air. Of the large apes, the orang will break off branches and fling them at its tormentors, or will throw the thick husks of the durian fruit, but with similar lack of aim. The most skilful in this exercise are some species of baboons, which can hurl branches, stones, or hard clods with much dexterity.

It is of interest to find existing apes availing themselves of their grasping power in this manner, since it leads us irresistibly to the conclusion that the man-ape may have done the same thing. The species which use missiles fail to take aim for two reasons, one that they employ them only occasionally, often in imitation of human action, the other that their arms are ill suited to this motion from their constant employment in another duty. In the case of the man-ape we may justly look for a more effective result, since if the arms became relieved from duty in locomotion they were free to gain facility of action in other directions.

If in addition to this the man-ape began to use missiles with a definite purpose in view, that of striking down animal prey, so that the use of such weapons became habitual instead of occasional, it would soon gain some power of aim and a growing strength and skill in the throwing motion. It is quite probable, also, that an early use of weapons was in the form of clubs, which were retained in the grasp to strike down the prey when overtaken. In this case, we may imagine our primitive biped running swiftly after its prey, club in hand, striking at it when within reach; or, if it should prove too swift, hurling the club or a stone through the air with the hope of bringing it down in this manner. Such a flinging action, if now and then successful, would be likely soon to become habitual; while the arm would grow accustomed to this new motion, and attain skill in taking aim. We may reasonably infer, also, that the club would be used for defence as well as for offence, in case the man-ape were in its turn pursued by larger animals. Instead of fleeing to the nearest tree, it might now stand its ground and beat off its enemy.

All must admit the probability, in a large tribe of animals with grasping power in their hands, and in the habit of using missiles occasionally, of one or more species coming to use them habitually. All the anthropoid apes are certainly intelligent enough to do this, if it should prove advantageous to them. Its principal advantage, however, would seem to be to a species that became largely carnivorous and needed to capture running or flying prey.

The habit of using implements is one of supreme importance in animal evolution. To it we owe man as he exists to-day. While animals confined themselves to their natural weapons of teeth and claws, their development must have remained a very slow one and been confined within narrow limits. When they once began to add to their natural powers those of surrounding nature, by the use of artificial weapons, the first step in a new and illimitable range of evolution was taken. From that day to this, man has been occupied in unfolding this method, and has advanced enormously beyond his primal state. A crude and simple use of weapons gave him, in time, supremacy over all the lower animals. An advanced use of weapons and tools has given him, in a measure, supremacy over nature herself, and raised him to a stage almost infinitely beyond that of the animal which trusts solely to teeth and claws.

So far as we know, only one of the innumerable species of animals attained this development; unless, indeed, the various races of men had more than one ape ancestor. For the appearance of man there became necessary, first, the development of an order of animals with power of grasp in their hands; and, second, the development of one or more biped species, with hands freed from duty as walking organs and capable of use in other directions. A third necessity was very probably the exchange of the frugivorous for the carnivorous habit, which would act as a predisposing agency in inducing the animal to desert the tree for the ground, and to employ weapons in the chase. The final result of all this would be an erect, walking, and running animal, with arms and hands quite free from their old duty, except during an occasional return to the tree, and with the necessary straightening of joints and development of supporting muscles.

What has been advanced above is, no doubt, largely a series of assumptions and conjectures, few of which are sustained by known facts. But as the matter stands, no other method of dealing with it can be adopted, since the facts in the case have in great part vanished. What we know positively is that man exists, and that in physical structure he is very closely related to the anthropoid apes. What we have excellent reason to feel assured of is that man has descended from the lower animals, and in all probability from an ape-like ancestor. We know that one or more species of anthropoid apes have become extinct, and can reasonably conjecture that one ancient species became modified into the form of man. We know that human remains have been found that, to some small extent, fill the gap between man and the ape. Correlative evidence exists in the variations in length of limb in the existing anthropoids, their efforts to walk upright, their varied degree of dependence upon the arms for locomotion, and the occasional use of missiles by these and lower forms. To these may be added the carnivorous tastes shown by many members of the ape family, with the indication that more decided carnivorous habits might readily be assumed.

Taking the stand that such a partly carnivorous anthropoid ape, biped in structure, appeared and made the ground its usual place of residence, we find ourselves on the direct trail of man. Long ago as this may have been, and far and difficult as was the journey to be made, the way was thenceforth straight and well-defined. Such an animal, living largely on animal food, and using weapons superior to its natural ones in the capture of prey, was essentially a man, however low may still have been its level of intelligence. Its feet were firmly fixed upon the upward track, and only time and stress of circumstance were needed to carry it upward to the high level of civilized man.

We may, indeed, go further than this. We are in a measure justified in saying what this man-ape was like, this creature which had left its early home in the trees and began to walk upright upon the earth, pursuing the larger animals and capturing them for food. It was probably much smaller than existing man, little if any more than four feet in height and not more than half the weight of man. Its body was covered, though not profusely, with hair, the hair of the head being woolly or frizzly in texture, and the face provided with a beard. The complexion was not jet black, like the typical negro, but of a dull brown hue, the hair being somewhat similar in color. The arms were lank and rather long, the back much curved, the chest flat and narrow, the abdomen protruding, the legs rather short and bowed, the walk a waddling motion, somewhat like that of the gibbon. It had small, deep-set eyes, greatly protruding mouth with gaping lips, huge ears, and in general a very ape-like aspect. Our warrant for this description of man's ancestor must be left for a later portion of our work. We shall only say here that it is based on known fact, not on fancy.

THE DEVELOPMENT OF INTELLIGENCE

The full adoption of the erect attitude gave the ancestor of man an immense motor supremacy over the lower animals, for it completely released his fore limbs from duty as organs of support and set them free for new and superior purposes. In all the animal kingdom below man there exists but a single form that emulates him in this possession of a grasping organ which takes no part in walking or in other modes of locomotion. This is the elephant, whose nose and upper lip have developed into an enormous and highly flexible trunk, with delicate grasping powers. The possession of this organ may have had much to do with the intellectual acumen of the elephant. Yet it is far inferior in its powers to the arm and hand of man; while the form, size, and food of the elephant stand in the way of the progress which might have been made by an animal possessed of such an organ in connection with a better suited bodily structure.

For a period of many millions of years the world of vertebrate life continued quadrupedal, or where a variation from this structure took place the fore limbs remained to a large extent organs of locomotion. Finally a true biped appeared. For a period of equal duration the mental progress of animals was exceedingly slow. Then, with almost startling suddenness, a highly intellectual animal appeared. Thus the coming of man indicated, in two directions, an extraordinary deviation from the ordinary course of animal development. Both physically and mentally evolution seemed to take an enormous leap, instead of proceeding by its usual minute steps, and in the advent of man we have a phenomenon remarkable alike in the development of the body and the mind.

So far our attention has been directed to the evolution of the human body, now we must consider that of the human mind. In seeking through the animal kingdom for the probable ancestor of man in his bodily aspect, we were drawn irresistibly to the ape tribe, as the only one that made any near approach to him in structure. In considering the case from the point of view of mental development we find a similar irresistible drawing toward the apes, as the most spontaneously intelligent of the mammalia. While many of the lower animals are capable of being taught, the ape stands nearly alone in the power of thinking for itself, the characteristic of self-education.

Innumerable testimonials could be quoted from observers in evidence of the superior mental powers of the apes. Hartmann says of them that "their intelligence sets them high above other mammals," and Romanes that they "certainly surpass all other animals in the scope of their rational faculty." It is scarcely necessary here to give extended examples of ape intelligence. Hundreds of instances are on record, many of them showing remarkable powers of reasoning for one of the lower animals. The ape, it is true, is not alone in its teachableness. Nearly all the domestic animals can be taught, the dog and the elephant to a considerable degree. And evidences of reasoning out some subject for themselves now and then appear in the domesticated species; but these are rare instances, not frequent acts as in the case of the apes.

The apes, indeed, rarely need teaching. They observe and imitate to an extent far beyond that displayed by any others of the lower animals, and the more remarkable from the fact that in nearly every instance the animals concerned began life in the wild state, and had none of the advantages of hereditary influence possessed by the domesticated dog and horse. Among the most interesting examples of spontaneous acts of intelligence of the ape tribe are those related by Romanes, in his "Animal Intelligence," of the doings of a cebus monkey, which he kept for several months under close observation in his own house. Instead of selecting general examples of ape actions, we may cite some of the doings of this intelligent creature.

The cebus did not wait to be shown how to do things, but was an adept in devising ways to do them himself. He had the monkey love of mischief well developed, and not much that was breakable came whole from his hands. When he could not break an egg cup by dashing it to the ground, he hammered it on the post of a brass bedstead until it was in fragments. In breaking a stick, he would pass it down between a heavy object and the wall, and break it by hanging on its end. In destroying an article of dress, he would begin by carefully pulling out the threads, and afterward tear it to pieces with his teeth. His nuts he broke with a hammer precisely as a man would have done and without being shown its use. Ridicule was not pleasant to him; he strongly resented being laughed at, and would throw anything within reach at his tormentor and with a skill and force not usual with monkeys. Taking the missile in both hands and standing erect, he would extend his long arms behind his back and hurl the article by bringing them forcibly forward.

If any object he wanted was too far away to reach, he would draw it toward him with a stick. Failing in this, he was observed to throw a shawl back over his head, and then fling it forward with all his strength, holding it by two corners. When it fell over the object, he brought this within reach by drawing in the shawl. In his gyrations, the chain by which he was fastened often became twisted around some object. He would now examine it intently, pulling it in opposite ways with his fingers until he had discovered how the turns ran. This done, he would carefully reverse his motions until the chain was quite disentangled.

The most striking act of intelligence told of this creature was his dealings with a hearth-brush which fell into his hands, and of which the handle screwed into the brush. It took him no long time to find out how to unscrew the handle. When this was achieved, he at once began to try and screw it in again. In doing so he showed great ingenuity. At first he put the wrong end of the handle into the hole, and turned it round and round in the right direction for screwing. Finding this would not work, he took it out and tried the other end, always turning in the right direction. It was a difficult feat to perform, as he had to turn the screw with both hands, while the flexible bristles of the brush prevented it from remaining steady. To aid his operations he now held the brush with one foot, while turning with both hands. It was still difficult to make the first turn of the screw, but he worked on with untiring perseverance until he got the thread to catch, and then screwed it in to the end. The remarkable thing was that he never tried to turn the handle in the wrong direction, but always screwed it from left to right, as if he knew that he must reverse the original motion. The feat accomplished, he repeated it, and continued to do so until he could perform it easily. Then he threw the brush aside, apparently taking no more interest in that over which he had worked so persistently. No man could have devoted himself more earnestly to learn some new art, and become more indifferent to it when once learned. These are a few only of the many acts of intelligence observed by Mr. Romanes in the doings of this animal. They will suffice as examples of what we mean by spontaneous intelligence. The cebus did not need to be shown how to do things; it worked them out for itself much as a man would have done, performing acts of an intricacy far beyond any ever observed in other classes of animals in captivity. It may be said further that the displays of spontaneous intelligence shown by dogs, cats, and similar animals have usually been intended in some way for the advantage of the animal; few or none are on record which indicate a mere desire to know without ulterior advantage; no persevering effort, like that with the brush, which is purely an instance of self-instruction.

Examples of intelligence of this advanced character could be cited from observation of monkeys of various species. The anthropoid apes have not been brought to any large extent under observation, but are notable for their intelligence in captivity. It is not easy to observe them in a state of nature, and nearly all we know is that the orang makes itself a nightly bed of branches broken off and carefully laid together, and is said to cover itself in bed with large leaves, if the weather is wet. The chimpanzee has a similar habit, and the gorilla is said to build itself a nest in which the female and the young sleep, the old male resting at the foot of the tree, on guard against their dangerous foe, the leopard.

It is the young animals of these species which are the most social and docile and most approach man in appearance. As they grow older, their specific characters become more marked. Fierce and sullen as is the old gorilla, the young of this species is playful and affectionate in captivity and is given to mischievous tricks. The one that was kept for a time in Berlin showed much good-nature, playfulness, and intelligence, and some degree of monkey mischievousness. It was very cunning in carrying out its plans, particularly in stealing sugar, of which it was very fond.

The chief examples of anthropoid intelligence are told of the chimpanzee, which has been most frequently kept in captivity. It is usually lively and good-tempered and is very teachable. Some of the stories of its intelligence may be apocryphal, as those told by Captain Grandpr? of a chimpanzee which performed all the duties of a sailor on board ship, and of one that would heat the oven for a baker and inform him when it was of the right temperature. But there are authenticated stories of chimpanzee intelligence which give it a high standing in this respect among the lower animals.

The emotional nature of the ape is also highly developed. It displays an affection equal to that of the dog, and a sympathy surpassing that of any other animal below man. The feeling displayed by monkeys for others of their kind in pain is of the most affecting nature, and Brehm relates that in the monkeys of certain species kept under confinement by him in Africa, the grief of the females for the loss of their young was so intense as to cause their death. More than once an ardent hunter has seen such examples of tender solicitude among monkeys for the wounded and of grief for the dead as to resolve never to fire at one of the race again.

James Forbes, in his "Oriental Memoirs," relates a striking instance of this kind. One of a shooting party had killed a female monkey in a banian tree, and carried it to his tent. Forty or fifty of the tribe soon gathered around the tent, chattering furiously and threatening an attack, from which they were only diverted by the display of the fowling-piece, whose effects they seemed perfectly to understand. But while the others retreated, the leader of the troop stood his ground, continuing his threatening chatter. Finding this of no avail, he came to the door of the tent, moaning sadly, and by his gestures seeming to beg for the dead body. When it was given, he took it sorrowfully up in his arms and carried it away to the waiting troop. That hunter never shot a monkey again.

This deep feeling for the dead is probably not common among monkeys. The gibbon, for instance, is said to take no notice of the dead. It is, however, highly sympathetic to injured and sick companions, and this feeling seems common to all the apes. No human being could show more tender care of wounded or helpless companions than has often been seen in members of this affectionate tribe of animals.

Without giving further examples of the intelligence and sympathy of the apes, we may say that they possess in a marked degree the mental powers to which man owes so much, viz. observation and imitation. The ape is the most curious of the lower animals--that is, it possesses the faculty of observation in an unusual degree. What we call curiosity in the ape is the basic form of the characteristic which we call attention or observation in man. Its seeming great activity in the ape is what might naturally be expected in an observant animal when removed from its natural habitat to a location where all around it is new and strange. Man under like circumstances is as curious as the ape, while the latter in its native trees probably finds little to excite its special attention. In both man and the ape it needs novelty to excite curiosity.

Add to tbrJar First Page Next Page Prev Page

 

Back to top