bell notificationshomepageloginedit profileclubsdmBox

Read Ebook: How it Works Dealing in simple language with steam electricity light heat sound hydraulics optics etc. and with their applications to apparatus in common use by Williams Archibald

More about this book

Font size:

Background color:

Text color:

Add to tbrJar First Page Next Page Prev Page

Ebook has 825 lines and 69591 words, and 17 pages

THE INTERNAL-COMBUSTION ENGINE.

The meaning of the term--Action of the internal-combustion engine--The motor car--The starting-handle--The engine--The carburetter--Ignition of the charge--Advancing the spark--Governing the engine--The clutch--The gear-box--The compensating gear--The silencer--The brakes--Speed of cars.

THE MEANING OF THE TERM "INTERNAL-COMBUSTION ENGINE."

ACTION OF THE ENGINE.

THE MOTOR CAR.

An alternative method of driving is by means of chains, which run round sprocket wheels on the ends of a shaft crossing the frame just behind the gear-box, and round larger sprockets attached to the hubs of the driving-wheels. In such a case the axles of the driving-wheel are fixed to the springs, and the wheels revolve round them. Where a Cardan drive is used the axles are attached rigidly to the wheels at one end, and extend, through tubes fixed to the springs, to bevel-wheels in a central compensating-gear box .

Several parts--the carburetter, tanks, governor, and pump--are not shown in the general plan. These will be referred to in the more detailed account that follows.

THE STARTING-HANDLE.

Fig. 41 gives the starting-handle in part section. The handle H is attached to a tube which terminates in a clutch, C. A powerful spring keeps C normally apart from a second clutch, C^1, keyed to the engine shaft. When the driver wishes to start the engine he presses the handle towards the right, brings the clutches together, and turns the handle in a clockwise direction. As soon as the engine begins to fire, the faces of the clutches slip over one another.

THE ENGINE.

The cranks revolve in an oil-tight case , and dip in oil, which they splash up into the cylinder to keep the piston well lubricated. The plate, P P, through a slot in which the piston rod works, prevents an excess of oil being flung up. Channels are provided for leading oil into the bearings. The cranks are 180? apart. While one piston is being driven out by an explosion, the other is compressing its charge prior to ignition, so that the one action deadens the other. Therefore two explosions occur in one revolution of the cranks, and none during the next revolution. If both cranks were in line, the pistons would move together, giving one explosion each revolution.

The valve seats, and the inlet and exhaust pipes, are seen in section. The inlet valve here works automatically, being pulled in by suction; but on many engines--on all powerful engines--the inlet, like the exhaust valve, is lifted by a cam, lest it should stick or work irregularly. Three dotted circles show A, a cog on the crank shaft; B, a "lay" cog, which transmits motion to C, on a short shaft rotating the cam that lifts the exhaust valve. C, having twice as many teeth as A, revolves at half its rate. This ensures that the valve shall be lifted only once in two revolutions of the crank shaft to which it is geared. The cogs are timed, or arranged, so that the cam begins to lift the valve when the piston has made about seven-eighths of its explosion stroke, and closes the valve at the end of the exhaust stroke.

THE CARBURETTER.

The suction of the engine makes petrol spirt through the jet and atomize itself against a spraying-cone, A. It then passes to the engine inlet pipe through a number of openings, after mixing with air entering from below. An extra air inlet, controllable by the driver, is generally added, unless the carburetter be of a type which automatically maintains constant proportions of air and vapour. The jet chamber is often surrounded by a jacket, through which part of the hot exhaust gases circulate. In cold weather especially this is a valuable aid to vaporization.

IGNITION OF THE CHARGE.

ADVANCING THE SPARK.

GOVERNING THE ENGINE.

There are several methods of controlling the speed of internal-combustion engines. The operating mechanism in most cases is a centrifugal ball-governor. When the speed has reached the fixed limit it either raises the exhaust valve, so that no fresh charges are drawn in; prevents the opening of the inlet valve; or throttles the gas supply. The last is now most commonly used on motor cars, in conjunction with some device for putting it out of action when the driver wishes to exceed the highest speed that it normally permits.

A sketch of a neat governor, with regulating attachment, is given in Fig. 47. The governor shaft is driven from the engine. As the balls, B B, increase their velocity, they fly away from the shaft and move the arms, A A, and a sliding tube, C, towards the right. This rocks the lever R, and allows the valves in the inlet pipe to close and reduce the supply of air and gas. A wedge, W, which can be raised or lowered by lever L, intervenes between the end of R and the valve stem. If this lever be lifted to its highest position, the governing commences at a lower speed, as the valve then has but a short distance to travel before closing completely. For high speeds the driver depresses L, forces the wedge down, and so minimizes the effect of the governor.

THE CLUTCH.

To get the lowest, or "first," speed the driver moves his lever and slides 5 into gear with 6. The transmission then is: 1 turns 2, 2 turns 5, 5 turns 6, 6 turns the propeller shaft through the universal joint. For the second speed, 5 and 6 are disengaged, and 6 is moved up the page, as it were, till projections on it interlock with slots in 4; thus driving 1, 2, 3, 4, shaft. For the third, or "solid," speed, 6 is pulled down into connection with 1, and couples the engine shaft direct to the propeller shaft.

The "reverse" is accomplished by raising a long pinion, 7, which lies in the gear-box under 5 and 6. The drive then is 1, 2, 5, 7, 6. There being an odd number of pinions now engaged, the propeller shaft turns in the reverse direction to that of the engine shaft.

THE COMPENSATING GEAR.

THE SILENCER.

THE BRAKES.

Every car carries at least two brakes of band pattern--one, usually worked by a side hand-lever, acting on the axle or hubs of the driving-wheel; the other, operated by the foot, acting on the transmission gear . The latter brake is generally arranged to withdraw the clutch simultaneously. Tests have proved that even heavy cars can be pulled up in astonishingly short distances, considering their rate of travel. Trials made in the United States with a touring car and a four-in-hand coach gave 25-1/3 and 70 feet respectively for the distance in which the speed could be reduced from sixteen miles per hour to zero.

SPEED OF CARS.

As regards speed, motor cars can rival the fastest express trains, even on long journeys. In fact, feats performed during the Gordon-Bennett and other races have equalled railway performances over equal distances. When we come to record speeds, we find a car, specially built for the purpose, covering a mile in less than half a minute. A speed of over 120 miles an hour has actually been reached. Engines of 150 h.p. can now be packed into a vehicle scaling less than 1-1/2 tons. Even on touring cars are often found engines developing 40 to 60 h.p., which force the car up steep hills at a pace nothing less than astonishing. In the future the motor car will revolutionize our modes of life to an extent comparable to the changes effected by the advent of the steam-engine. Even since 1896, when the "man-with-the-flag" law was abolished in the British Isles, the motor has reduced distances, opened up country districts, and generally quickened the pulses of the community in a manner which makes it hazardous to prophesy how the next generation will live.

Steam-driven cars are not considered in this chapter, as their principle is much the same as that of the ordinary locomotive.

On some cars natural circulation is used, the hot water flowing from the top of the cylinder to the tank, from which it returns, after being cooled, to the bottom of the cylinder.

For explanation of the induction coil, see p. 122

ELECTRICAL APPARATUS.

What is electricity?--Forms of electricity--Magnetism--The permanent magnet--Lines of force--Electro-magnets--The electric bell--The induction coil--The condenser--Transformation of current--Uses of the induction coil.

WHAT IS ELECTRICITY?

FORMS OF ELECTRICITY.

MAGNETISM.

The most familiar form of electricity is that known as magnetism. When a bar of steel or iron is magnetized, it is supposed that the molecules in it turn and arrange themselves with all their north-seeking poles towards the one end of the bar, and their south-seeking poles towards the other. If the bar is balanced freely on a pivot, it comes to rest pointing north and south; for, the earth being a huge magnet, its north pole attracts all the north-seeking poles of the molecules, and its south poles the south-seeking poles.

THE PERMANENT MAGNET.

LINES OF FORCE.

ELECTRICAL MAGNETS.

In Fig. 51 you will notice that some of the "lines of force" are deflected through the iron bar A. They pass more easily through iron than through air; and will choose iron by preference. The attraction exercised by a magnet on iron may be due to the effort of the lines of force to shorten their paths. It is evident that the closer A comes to the poles of the magnet the less will be the distance to be travelled from one pole to the bar, along it, and back to the other pole.

Having now considered electricity in three of its forms--static, current, and rotatory--we will pass to some of its applications.

THE ELECTRIC BELL.

In Fig. 52 we have a diagrammatic view of an electric bell and current. When the bell-push is pressed in, current flows from the battery to terminal T^1, round the electro-magnet M, through the pillar P and flat steel springs S and B, through the platinum-pointed screw, and back to the battery through the push. The circulation of current magnetizes M, which attracts the iron armature A attached to the spring S, and draws the hammer H towards the gong. Just before the stroke occurs, the spring B leaves the tip of the screw, and the circuit is broken, so that the magnet no longer attracts. H is carried by its momentum against the gong, and is withdrawn by the spring, until B once more makes contact, and the magnet is re-excited. The hammer vibrations recur many times a second as long as the push is pressed in.

The electric bell is used for so many purposes that they cannot all be noted. It plays an especially important part in telephonic installations to draw the attention of the subscribers, forms an item in automatic fire and burglar alarms, and is a necessary adjunct of railway signalling cabins.

THE INDUCTION OR RUHMKORFF COIL.

THE CONDENSER.

The sudden parting of H and S would produce strong sparking across the gap between them if it were not for the condenser, which consists of a number of tinfoil sheets separated by layers of paraffined paper. All the "odd" sheets are connected with T, all the "even" with T^1. Now, the more rapid the extinction of magnetism in the core after "break" of the primary circuit, the more rapidly will the lines of force collapse, and the more intense will be the induced current in the secondary coil. The condenser diminishes the period of extinction very greatly, while lengthening the period of magnetization after the "make" of the primary current, and so decreasing the strength of the reverse current.

TRANSFORMATION OF CURRENT.

The difference in the voltage of the primary and secondary currents depends on the length of the windings. If there are 100 turns of wire in the primary, and 100,000 turns in the secondary, the voltage will be increased 1,000 times; so that a 4-volt current is "stepped up" to 4,000 volts. In the largest induction coils the secondary winding absorbs 200-300 miles of wire, and the spark given may be anything up to four feet in length. Such a spark would pierce a glass plate two inches thick.

USES OF THE INDUCTION COIL.

Add to tbrJar First Page Next Page Prev Page

 

Back to top