bell notificationshomepageloginedit profileclubsdmBox

Read Ebook: Common Science by Washburne Carleton Ritchie John W John Woodside Editor

More about this book

Font size:

Background color:

Text color:

Add to tbrJar First Page Next Page

Ebook has 1337 lines and 112952 words, and 27 pages

A. The Electrical Apparatus 379

B. Construction of the Cigar-box Telegraph 381

INDEX 383

COMMON SCIENCE

GRAVITATION

Why is it that the oceans do not flow off the earth? What is gravity? What is "down," and what is "up"?

There is a place where nothing has weight; where there is no "up" or "down"; where nothing ever falls; and where, if people were there, they would float about with their heads pointing in all directions. This is not a fairy tale; every word of it is scientifically true. If we had some way of flying straight toward the sun about 160,000 miles, we should really reach this strange place.

Let us pretend that we can do it. Suppose we have built a machine that can fly far out from the earth through space . And since the place is far beyond the air that surrounds the earth, let us imagine that we have fitted out the air-tight cabin of our machine with plenty of air to breathe, and with food and everything we need for living. We shall picture it something like the cabin of an ocean steamer. And let us pretend that we have just arrived at the place where things weigh nothing:

When you try to walk, you glide toward the ceiling of the cabin and do not stop before your head bumps against it. If you push on the ceiling, you float back toward the floor. But you cannot tell whether the floor is above or below, because you have no idea as to which way is up and which way is down.

Suppose that for the sake of experimenting you have brought an elephant along on this trip. You can move under him , brace your feet on the floor, and give him a push. If you push hard enough to get the elephant started, he rises slowly toward the ceiling. When he objects on the way, and struggles and kicks and tries to get back to the floor, it does not help him at all. His bulky, kicking body floats steadily on till it crashes into the ceiling.

No chairs or beds are needed in this place. You can lie or sit in mid-air, or cling to a fixture on a wall, resting as gently there as a feather might. There is no need to set the table for meals--just lay the dishes with the food on them in space and they stay there. If the top of your cup of chocolate is toward the ceiling, and your plate of food is turned the other way, no harm is done. Your feet may happen to point toward the ceiling, while some one else's point toward the floor, as you sit in mid-air, eating. There is some difficulty in getting the food on the dishes, so probably you do not wish to bother with dishes, after all. Do you want some mashed potatoes? All right, here it is--and the cook jerks the spoon away from the potatoes, leaving them floating before you, ready to eat.

It is literally a topsy-turvy place.

WHY WATER DOES NOT FLOW OFF THE EARTH. It was because people did not know about gravitation that they laughed at Columbus when he said the earth was round. "Why, if the earth were round," they argued, "the water would all flow off on the other side." They did not know that water flows downhill because the earth is pulling it toward its center by gravitation, and that it does not make the slightest difference on which side of the earth water is, since it is still pulled toward the center.

WHY THE WORLD DOES NOT FALL DOWN. And people used to wonder "what held the earth up." The answer, as you can see, is easy. There simply is no up or down in space. The earth cannot fall down, because there is no down to fall to. "Down" merely means toward the earth, and the earth cannot very well fall toward itself, can it? The sun is pulling on it, though; so the earth could fall into the sun, and it would do so, if it were not swinging around the sun so fast. You will see how this keeps it from falling into the sun when you come to the section on centrifugal force.

WHY THERE IS A PLACE WHERE THINGS WEIGH NOTHING. Now about the place where gravitation has no effect. Since an object near the sun is pulled more by the sun than it is by the earth, and since down here near the earth an object is pulled harder by the earth than by the sun, it is clear that there must be a place between the sun and the earth where their pulls just balance; and where the sun pulls just as hard one way as the earth pulls the other way, things will not fall either way, but will float. The place where the pulls of the sun and the earth are equal is not halfway between the earth and the sun, because the sun is so much larger and pulls so much more powerfully than the earth, that the place where their pulls balance is much nearer the earth than it is to the sun. As a matter of fact, it can be easily calculated that this spot is somewhere near 160,000 miles from the earth.

There are other spots like it between every two stars, and in the center of the earth, and in the center of every other body. You see, in the center of the earth there is just as much of the earth pulling one way as there is pulling the other, so again there is no up or down.

Why does a spring bubble up from the ground? What makes the water come up through the pipe into your house? Why is a fire engine needed to pump water up high?

You remember that up where the pull of the earth and the sun balance each other, water could not flow or flatten out. Let us try to imagine that water, here on the earth, has lost its habit of flattening out whenever possible--that, like clay, it keeps whatever shape it is given.

First you notice that the water fails to run out of the faucets. People all begin to search for water to drink. They rush to the rivers and begin to dig the water out of them. It looks queer to see a hole left in the water wherever a person has scooped up a pailful. If some one slips into the river while getting water, he does not drown, because the water cannot close in over his head; there is just a deep hole where he has fallen through, and he breathes the air that comes down to him at the bottom of the hole. If you try to row on the water, each stroke of the oars piles up the water, and the boat makes a deep furrow wherever it goes so that the whole river begins to look like a rough, plowed field.

When the rivers are used up, people search in vain for springs. So people have to get their water from underground or go to lakes for it. And these lakes are strange sights. Storms toss up huge waves, which remain as ridges and furrows until another storm tears them down and throws up new ones.

But with no rivers flowing into them, the lakes also are used up in time. The only fresh water to be had is what is caught from the rain. Even wells soon become useless; because as soon as you pump up the water surrounding the pump, no more water flows in around it; and if you use a bucket to raise the water, the well goes dry as soon as the supply of water standing in it has been drawn.

You will understand more about water seeking its own level if you do this experiment:

EXPERIMENT 1. Put one end of a rubber tube over the narrow neck of a funnel , and put the other end of the tube over a piece of glass tubing not less than 5 or 6 inches long. Hold up the glass tube and the funnel, letting the rubber tube sag down between them as in Figure 1. Now fill the funnel three fourths full of water. Raise the glass tube higher if the water starts to flow out of it. If no water shows in the glass tube, lower it until it does. Gradually raise and lower the tube, and notice how high the water goes in it whenever it is held still.

This same thing would happen with any shape of tube or funnel. You have another example of it when you fill a teakettle: the water rises in the spout just as high as it does in the kettle.

WHY WATER FLOWS UP INTO YOUR HOUSE. It is because water seeks its own level that it comes up through the pipes in your house. Usually the water for a city is pumped into a reservoir that is as high as the highest house in the city. When it flows down from the reservoir, it tends to rise in any pipe through which it flows, to the height at which the water in the reservoir stands. If a house is higher than the surface of the water in the reservoir, of course that house will get no running water.

WHY FIRE ENGINES ARE NEEDED TO FORCE WATER HIGH. In putting out a fire, the firemen often want to throw the water with a good deal of force. The tendency of the water to seek its own level does not always give a high enough or powerful enough stream from the fire hose; so a fire engine is used to pump the water through the hose, and the stream flows with much more force than if it were not pumped.

Does a balloon explode if it goes high in the air?

What is suction?

Why does soda water run up a straw when you draw on the straw?

Why will evaporated milk not flow freely out of a can in which there is only one hole?

Why does water gurgle when you pour it out of a bottle?

We are living in a sea of compressed air. Every square inch of our bodies has about 15 pounds of pressure against it. The only reason we are not crushed is that there is as strong pressure inside of our bodies pushing out as there is outside pushing in. There is compressed air in the blood and all through the body. If you were to lie down on the ground and have all the air pumped out from under you, the air above would crush you as flat as a pancake. You might as well let a dozen big farm horses trample on you, or let a huge elephant roll over you, as let the air press down on you if there were no air underneath and inside your body to resist the pressure from above. It is hard to believe that the air and liquids in our bodies are pressing out with a force great enough to resist this crushing weight of air. But if you were suddenly to go up above the earth's atmosphere, or if you were to stay down here and go into a room from which the air were to be pumped all at once, your body would explode like a torpedo.

When you suck the air out of a bottle, the surrounding air pressure forces the bottle against your tongue; if the bottle is a small one, it will stick there. And the pressure of the air and blood in your tongue will force your tongue down into the neck of the bottle from which part of the air has been taken.

In the same way, when you force the air out of a rubber suction cap, such as is used to fasten reading lamps to the head of a bed, the air pressure outside holds the suction cap tightly to the object against which you first pressed it, making it stick there.

EXPERIMENT 2. Hold a burned-out electric lamp in a basin of water, break its point off, and see what happens.

All the common electric lamps are made with vacuums inside. The reason for this is that the fine wire would burn up if there were any air in the lamps. When you knock the point off the globe, it leaves a space into which the water can be pushed. Since the air is pressing hard on the surface of the water except in the one place where the vacuum in the lamp globe is, the water is forced violently into this empty space.

It really is a good deal like the way mud comes up between your toes when you are barefoot. Your foot is pressing on the mud all around except in the spaces between your toes, and so the mud is forced up into these spaces. The air pressure on the water is like your foot on the mud, and the space in the lamp globe is like the space between your toes. Since wherever there is air it is pressing hard, the only space into which it can force water or anything else is into a place from which all the air has been removed, like the inside of the lamp globe.

The reason that the water does not run out of the globe is this: the hole is too small to let the air squeeze up past the water, and therefore no air can take the place of the water that might otherwise run out. In order to flow out, then, the water would have to leave an empty space or vacuum behind it, and the air pressure would not allow this.

WHY WATER GURGLES WHEN IT POURS OUT OF A BOTTLE. You have often noticed that when you pour water out of a bottle it gurgles and gulps instead of flowing out evenly. The reason for this is that when a little water gets out and leaves an empty space behind, the air pushing against the water starts to force it back up; but since the mouth of the bottle is fairly wide, the air itself squeezes past the water and bubbles up to the top.

EXPERIMENT 3. Put a straw or a piece of glass tube down into a glass of water. Hold your finger tightly over the upper end, and lift the tube out of the water. Notice how the water stays in the tube. Now remove your finger from the upper end.

The air holds the water up in the tube because there is no room for it to bubble up into the tube to take the place of the water; and the water, to flow out of the tube, would have to leave a vacuum, which the air outside does not allow. But when you take your finger off the top of the straw or tube, the air from above takes the place of the water as rapidly as it flows out; so there is no tendency to form a vacuum, and the water leaves the tube. Now do you see why you make two holes in the top of a can of evaporated milk when you wish to pour the milk out evenly?

EXPERIMENT 4. Push a rubber suction cap firmly against the inside of the bell jar of an air pump. Try to pull the suction cap off. If it comes off, press it on again; place the bell jar on the plate of the air pump, and pump the air out of the jar. What must have been holding the suction cap against the inside of the jar? Does air press up and sidewise as well as down? Test this further in the following experiment:

EXPERIMENT 5. Put a cork into an empty bottle. Do not use a new cork, but one that has been fitted into the bottle many times and has become shaped to the neck. Press the cork in rather firmly, so that it is air-tight, but do not jam it in. Set the bottle on the plate of the air pump, put the bell jar over it, and pump the air out of the jar. What makes the cork fly out of the bottle? What was really in the "empty" bottle? Why could it not push the cork out until you had pumped the air out of the jar?

Before you pumped the air out of the hemisphere, the compressed air inside of them was pushing them apart just as hard as the air outside of them was pushing them together. When you pumped the air out, however, there was hardly any air left inside of them to push outward. So the strong pressure of the outside air against the hemispheres had nothing to oppose it. It therefore pressed them very tightly together and held them that way.

This experiment was first tried by a man living in Magdeburg, Germany. The first set of hemispheres he used proved too weak, and when the air in them was partly pumped out, the pressure of the outside air crushed them like an egg shell. The second set was over a foot in diameter and much stronger. After he had pumped the air out, it took sixteen horses, eight pulling one way and eight the opposite way, to pull the hemispheres apart.

EXPERIMENT 7. Fill a bottle half full of water. Through a one-hole stopper that will fit the bottle, put a bent piece of glass tubing that will reach down to the bottom of the bottle. Set the bottle, thus stoppered, on the plate of the air pump, with a beaker or tumbler under the outer end of the glass tube. Put the bell jar over the bottle and glass, and pump the air out of the jar. What is it that forces the water up and out of the bottle? Why could it do this when the air was pumped out of the bell jar and not before?

HOW A SELTZER SIPHON WORKS. A seltzer siphon works on the same principle. But instead of the ordinary compressed air that is all around us, there is in the seltzer siphon a gas which has been much more compressed than ordinary air. This strongly compressed gas forces the seltzer water out into the less compressed air, exactly as the compressed air in the upper part of the bottle forced the water out into the comparative vacuum of the bell jar in Experiment 7.

EXPERIMENT 8. Fill a toy balloon partly full of air by blowing into it, and close the neck with a rubber band so that no air can escape. Lay a saucer over the hole in the plate of the air pump, so that the rubber of the balloon cannot be sucked down the hole. Lay the balloon on top of this saucer, put the bell jar over it, and pump the air out of the jar. What makes the balloon expand? What is in it? Why could it not expand before you pumped the air out from around it?

A toy balloon expands for the same reason when it goes high in the air. Up there the air pressure is not so strong outside the balloon, and so the gas inside makes the balloon expand until it bursts.

EXPERIMENT 10. Put the mouth of a small syringe, or better, of a glass model lift pump, under water. Draw the handle up. Does the water follow the plunger up, stand still, or go down in the pump?

When you pull up the plunger, you leave an empty space; you shove the air out of the pump or syringe ahead of the plunger. The air outside, pressing on the water, forces it up into this empty space from which the air has been pushed. But air pressure cannot force water up even into a perfect vacuum farther than about 33 feet. If your glass pump were, say, 40 feet long, the water would follow the plunger up for a little over 30 feet, but nothing could suck it higher; for by the time it reaches that height it is pushing down with its own weight as hard as the air is pressing on the water below. No suction pump, or siphon, however perfect, will ever lift water more than about 33 feet, and it will do well if it draws water up 28 or 30 feet. This is because a perfect vacuum cannot be made. There is always some water vapor formed by the water evaporating a little, and there is always a small amount of air that has been dissolved in water, both of which partly fill the space above the water and press down a little on the water within the pump.

Add to tbrJar First Page Next Page

 

Back to top