bell notificationshomepageloginedit profileclubsdmBox

Read Ebook: Earth and Sky Every Child Should Know Easy studies of the earth and the stars for any time and place by Rogers Julia Ellen

More about this book

Font size:

Background color:

Text color:

Add to tbrJar First Page Next Page Prev Page

Ebook has 633 lines and 62808 words, and 13 pages

Where All the Water Comes From 53

The Richest Gold and Silver Mines 72

Rocks Being Ground to Flour 73

A Pond Made by a Glacier 88

The Struggle Between a Stream and Its Banks 89

Ripple Marks and Glacial Striae 102

Glacial Grooves and Markings 103

Crinoid and Ammonite 140

Fossil Corals, Coquina, Hippurite Limestone 141

Fossil Fish 152

Meteorite 153

Eocene Fish and Trilobite 156

How Coal Was Made 157

Banded Sandstone. Opalized Wood 176

Allosaurus 177

A Three-horned Dinosaur 178

Remains of Brontosaurus 179

Restoration of Brontosaurus 182

Ornitholestes, a Small Dinosaur 183

A Mammoth 186

An Ancestor of the Horse 187

Orion, His Dogs, and the Bull 214

Other Fanciful Sketches of Constellations 215

The Sky in Winter 244

The Sky in Spring 244

The Sky in Summer 244

The Sky in Autumn 244

PART I

THE EARTH

THE GREAT STONE BOOK

Deep in the ground, and high and dry on the sides of mountains, belts of limestone and sandstone and slate lie on the ancient granite ribs of the earth. They are the deposits of sand and mud that formed the shores of ancient seas. The limestone is formed of the decayed shells of animal forms that flourished in shallow bays along those shores. And all we know about the life of these early days is read in the epitaphs written on these stone tables.

Under the stratified rocks, the granite foundations tell nothing of life on the earth. But the sea rolled over them, and in it lived a great variety of shellfish. Evidently the earliest fossil-bearing rocks were worn away, for the rocks that now lie on the granite show not the beginnings, but the high tide of life. The "lost interval" of which geologists speak was a time when living forms were few in the sea.

In the muddy bottoms of shallow, quiet bays lie the shells and skeletons of the creatures that live their lives in those waters and die when they grow old and feeble. We have seen the fiddler crabs by thousands on such shores, young and old, lusty and feeble. We have seen the rocks along another coast almost covered by the coiled shells of little gray periwinkles, and big clumps of black mussels hanging on the piers and wharfs. All these creatures die, at length, and their shells accumulate on the shallow sea bottom. Who has not spent hours gathering dead shells which the tide has thrown up on the beach? Who has not cut his foot on the broken shells that lie in the sandy bottom we walk on whenever we go into the surf to swim or bathe?

Read downward from the surface toward the earth's centre--

It is by dying that the creatures of the sea write their epitaphs. The mud or sand swallows them up. In time these submerged banks may be left dry, and become beds of stone. Then some of the skeletons and shells may be revealed in blocks of quarried stone, still perfect in form after lying buried for thousands of years.

The leaves of this great stone book are the layers of rock, laid down under water. Between the leaves are pressed specimens--fossils of animals and plants that have lived on the earth.

THE FOSSIL FISH

I remember seeing a flat piece of stone on a library table, with the skeleton of a fish distinctly raised on one surface. The friend who owned this strange-looking specimen told me that she found it in a stone quarry. She brought home a large piece of the slate, and a stone-mason cut out the block with the fish in it, and her souvenir made a useful and interesting paper-weight.

The story of that fish I heard with wonder, and have never forgotten. I had never heard of fossil animals or plants until my good neighbour talked about them. She showed me bits of stone with fern leaves pressed into them. One piece of hard limestone was as full of little sea-shells as it could possibly be. One ball of marble was a honeycombed pattern, and called "fossil coral."

The fossil fish was once alive, swimming in the sea, and feeding on the things it liked to eat, as all happy fishes do. Near shore a river poured its muddy water into the sea, and the sandy bottom was covered with the mud that settled on it. At last the fish grew old, and perhaps a trifle stupid about catching minnows. It died, and sank to the muddy floor of the sea. Its horny bones were not dissolved by the water. They remained, and the mud filtered in and filled all the spaces. Soon the fish was buried completely by the sediment the river brought.

Years, thousands of them, went by, and the layer of mud was so thick and heavy above the skeleton of the fish that it bore a weight of tons there, under the water. The close-packed mud became a stiff clay. After more thousands of years, the sea no longer came so far ashore, for the river had built up a great delta of land out of mud. The clay in which the fish was hidden hardened into slate. Water crept down in the loose upper layers, dissolving out salt and other minerals, and having harder work to soak through, the lower it went. The water left some of the minerals it had accumulated, calcium and silica and iron, in the lower rock beds, making them harder than they were before, and heavier and less porous.

When the river gorge was cut through these layers of rock, the colour and thickness of each kind were laid bare. Centuries after, perhaps thousands of years, indeed, the quarrymen cut out the layers fit for building stones, flags for walks and slates for roofing. In the splitting of a flagstone, the long-buried skeleton of the fish came to light.

Under our feet the earth lies in layers. Under the soil lie loose beds of clay and sand and gravel, and under these loose kinds of earth are close-packed clays, sandstones, limestones, shales, often strangely tilted away from the horizontal line, but variously fitted, one layer to another. Under these rocks lie the foundations of the earth--the fire-formed rocks, like granite. The depth of this original rock is unknown. It is the substance out of which the earth is made, we think. All the layered rocks are made of particles of the older ones, stolen by wind and water, and finally deposited on the borders of lakes and seas. So our rivers are doing to-day what they have always done--they are tearing down rocks, grinding and sifting the fragments, and letting them fall where the current of fresh water meets a great body of water that is still, or has currents contrary to that of the river.

Do you see a little dead fish in the water? It is on the way to become a fossil, and the mud that sifts over it, to become a layer of slate. Every seashore buries its dead in layers of sand and mud.

THE CRUST OF THE EARTH

It is hard to believe that our solid earth was once a ball of seething liquid, like the red-hot iron that is poured out of the big clay cups into the sand moulds at an iron foundry. But when a mountain like Vesuvius sets up a mighty rumbling, and finally a mass of white-hot lava bursts from the centre and streams down the sides, covering the vineyards and olive orchards, and driving the people out of their homes in terror, it seems as if the earth's crust must be but a thin and frail affair, covering a fiery interior, which might at any time break out. The people who live near volcanoes might easily get this idea.

This is good reasoning. There are few active volcanoes left on the earth, compared with the number that were once active, and long ago became extinct. And the time between eruptions of the active ones grows longer; the eruptions less violent. Terrible as were the recent earthquakes of San Francisco and Messina, this form of disturbance of the earth's crust is growing constantly less frequent. The earth is growing cooler as it grows older; the crust thickens and grows stronger as centuries pass. We have been studying the earth only a few hundred years. The crust has been cooling for millions of years, and mountain-making was the result of the shrinking of the crust. That formed folds and clefts, and let masses of the heated substance pour out on the surface.

If a stone you can pick up is heavy, how much heavier is a great boulder that it takes a four-horse team to haul. What tremendous weight there is in all the boulders scattered on a hillside! The hill itself could not be made level without digging away thousands of tons of earth. The earth's outer crust, with its miles in depth of mountains and level ground, is a crushing weight lying on the heated under-substance. Every foot of depth adds greatly to the pressure exerted upon the mass, for the attraction of gravitation increases amazingly as the centre of the earth is approached.

It is now believed that the earth is solid to its centre, though heated to a high degree. Terrific pressure, which causes this heat, is exerted by the weight of the crust. A crack in the crust may relieve this pressure at some point, and a mass of substance may be forced out and burst into a flaming stream of lava. Such an eruption is familiar in volcanic regions. The fact that red-hot lava streams from the crater of Vesuvius is no proof that it was seething and bubbling while far below the surface.

Volcanoes, geysers, and hot springs prove that the earth's interior is hot. The crust is frozen the year around in the polar regions, and never between the Tropics of Cancer and Capricorn. The sun's rays produce our different climates, but they affect only the surface. Underground, there is a rise of a degree of temperature for every fifty feet one goes down. The lowest mine shaft is about a mile deep. That is only one four-thousandth of the distance to the earth's centre.

The theory that volcanoes are chimneys connecting lakes of burning lava with the surface of the earth is discredited by geologists. The weight of the overlying crust would, they think, close such chambers, and reduce liquids to a solid condition.

Add to tbrJar First Page Next Page Prev Page

 

Back to top