Read Ebook: Makers of Modern Medicine by Walsh James J James Joseph
Font size:
Background color:
Text color:
Add to tbrJar First Page Next Page Prev Page
Ebook has 709 lines and 106250 words, and 15 pages
These times and this part of Italy are famous in history for some of the opportunities afforded women in the matter of higher education. It has been suggested that it is perhaps to the liberal culture of the mothers we owe the fact that this part of Italy furnished for one hundred and fifty years about this time the greatest men in science of the time. It is well known that women occasionally held professorships at the University of Bologna, not far from Morgagni's birthplace. The general culture of the women of this section was very high. Modern masculine historians have even been ungenerous enough to point out that Bologna was famous for two things--the opportunities provided for the higher education of women and the extensive manufacture of various forms of prepared food, the best known of which, the classical Bologna sausage, has come down as a precious heritage to hurried housekeepers in our own time.
After an excellent preliminary education at Forli, always under the careful supervision and enlightened encouragement of his mother, Morgagni, as might have been expected from the place of his birth, went to the neighboring university town of Bologna for his higher studies. Bologna was at this time at the very acme of its reputation as the greatest of existent medical schools. The science of anatomy had been especially developed here as the result of important investigations and discoveries made by some of the greatest men in the history of medical science. Mondino had, very early in the fourteenth century, recreated the modern science of anatomy as we know it. He was the first to realize the importance and urge the necessity for the dissection of human bodies, if any real lasting progress in human anatomy was to be made. Medical teaching before this time had been largely by lectures and disputations upon the work of Aristotle, Hippocrates and Galen, but actual observation on human tissues and organs now replaced the older method. Bologna became a papal city in 1512, and it is especially after this date that, under the fostering care of the Popes, the University of Bologna became the centre of medical teaching for the whole world for several centuries.
During the century before Morgagni's entrance into the University of Bologna, the distinguished English physician Harvey, who was to lay the foundation of modern physiology by the discovery of the circulation of the blood, was attracted to Bologna because of the opportunities it presented for advanced work in the studies in which he was so much interested. While repeating some of the dissecting work that Vesalius had done Harvey was led to suspect the existence of the circulation and had his thoughts directed in the channel which finally led to his masterly exposition of the subject. In a word, here at Bologna the study of the physical side of life, so important a characteristic of latter-day science, became a distinct and recognized branch of science. As Professor Benjamin Ward Richardson said, in his sketch of the life of Morgagni, "Since that time there has been no decline in interest in these studies and medicine has been developed in a manner as daring in project as it has been useful in application."
Bologna was, at the time, certainly an excellent place for Morgagni. He went there as an inquiring youth of fifteen and began his medical studies at once. He became a student of two of the most celebrated professors of the time--Albertini, a leader in his day, though since more or less forgotten, and Valsalva, whose investigations into the anatomy of the ear assure him a permanent place in the science of anatomy for all time. When Morgagni went to the university, Valsalva was at the zenith of his brilliant career as an anatomist. He was in the midst of his great work on the organ of hearing. This extremely intricate piece of human mechanism had never been understood before his time, and the working out of its details proved a time-taking but intensely interesting investigation.
After four years of this precious training and study at the university, Morgagni took his degree as Doctor of Medicine and of Philosophy. The late Benjamin Ward Richardson, one of the great English medical men of the end of the nineteenth century, says that this is a happy combination of qualifications which might, with great advantage, be required of the graduate in the present day, when so much of medicine and so little of philosophy is demanded of the student, to the manifest detriment of both departments of knowledge.
Some idea of the estimation in which Morgagni was held at this time may be gathered from the fact that, though scarcely more than twenty-one years of age, he was sometimes allowed to assume Valsalva's lecture obligations during the master's absence. After graduation he spent some time at the university doing special work in connection with the science of anatomy, in which he was so much interested, and as an assistant professor and tutor. Bologna at this time enjoyed as wide a European reputation as at any period of its history. Students from all countries in Europe flocked here, especially to make their legal and medical studies. Among the medical students Morgagni was always a moving spirit, a leader in the phases of thought in many lines that were occupying students' minds at the time.
He was the founder and director of a society of young professors and maturer students, whose object was the discussion of scientific subjects of many kinds. The standard of the new society was personal investigation and observation as a means of arriving at scientific truth. The principal maxim that guided their discussions seems to have been that nothing was to be accepted on authority, merely because it was authority. In the physical sciences thought had been frequently cramped to fit the old theories inherited from Galen and Pliny and Aristotle and Hippocrates. A quotation from one of these classic authors on a point at issue was supposed to throw light on any difficulty that might be the subject of discussion.
Morgagni's society was called the Academia Inquietorum--"The Academy of the Restless"--the idea of the curious name being that the members were not satisfied to rest peacefully in the knowledge to be gleaned from the older authors, but preferred to get at science for themselves by direct observation and planned experiment. Morgagni's idea in founding the society seems to have been premature. The fate of the Academy of the Restless is involved in some obscurity, but biographers seem to hint that it failed of its purpose. Neither the university nor the times were yet ready for such freedom of thought as this. Even in our own day such a scheme would be considered radical and chimerical. The discouragement met with finally led to the abandonment of the meetings, and Morgagni gave up his attempt to inspire others with his own industry and enthusiasm for original investigation in the physical sciences.
For some years after this he seems to have been absent from Bologna. His time was spent especially at the medical schools of the great universities of Pisa and of Padua. Students who wished to make some special branch of medicine such as physiology, or anatomy, or the, then as yet scarcely known, science of pathology, their prime object in life, had to visit various universities in order to find opportunity and suggestion for study. Morgagni devoted himself so faithfully to his work that his eyesight failed him for a time and very probably his general health also. For some years he returned to his native town to recuperate. Here he took up the active practice of medicine. As so often happens, this period of rest after years of study proved especially broadening in its influence upon Morgagni. After his rest his contemporaries begin to realize his great possibilities as a scientist.
As the result of the reputation gained by this work he was offered a teaching position at the University of Padua and later was transferred to the chair of the second professorship of anatomy. After a few years he succeeded to the first professorship of anatomy at the university, at that time the most important post in the medical school. This gave him, at the age of about thirty-five, one of the greatest university professorships in the world. Opportunities for research were now amply provided. He was in a position where his communications would be received with due attention and his reputation was secure.
A university professorship in those days was a position of more importance than even in our own, and Morgagni was especially favored in the fact that it had come early in life, so as to enable him to round out his career. His work was eminently congenial to him, and the labor it involved was that which constituted for Morgagni the highest form of recreation. He made many friends among professors and students. The lectures which Morgagni delivered to the university became so popular that his lecture-room was overcrowded and new quarters had to be provided. Many foreign students were attracted to the university by his wide-spread reputation as a great and suggestive teacher. These students came in great numbers especially from the northern countries of Europe. At one time there were over a thousand German students at the University of Padua, and when they organized into a guild for mutual help and social purposes, Morgagni was chosen by them to act as their patron.
Some of Morgagni's work in clinical medicine and in pathology, as detailed in these volumes, remains of perennial interest and is often referred to. Many an after-time discovery, proclaimed loudly by its author, will be found, at times only in embryo but often enough in entirety, in its pages. There are frequent surprises to the reader in the anticipation of what are supposedly much later thoughts in medicine. Some of these passages of more general interest I venture to present here.
It was Morgagni who first realized that minute connections between parts of the nervous system might very easily provide the basis for symptoms quite distant from the site of actual disease. He gives, for instance, a detailed account of a curiously interesting case in which the patient, a man somewhat beyond middle life, was annoyed on a number of occasions by violent sneezing. These attacks of sneezing became more and more frequent and finally were accompanied by difficulty of breathing and a sense of pressure over the chest. These symptoms became more and more marked, until finally, during an especially violent attack of sneezing, the man suddenly died.
Up to this time anatomists generally had declared that there was no direct nervous connection between the mucous membrane of the nose and the diaphragm. Sneezing is due to a violent contraction of the diaphragm and is almost invariably caused by the presence of an irritant in the nose. This is, in fact, nature's method of getting rid of irritant material on the sensitive nasal mucous membranes by an explosive expulsion of air through the nose. This expulsion of air is brought about by a convulsive contraction of the diaphragm. It had always been supposed that the sneezing was due to irritation transmitted through the brain to the diaphragm.
Morgagni, in discussing the reason why the diaphragm should be excited into sympathetic reaction by the presence of an irritant in the nose, pointed out a fact that had been forgotten or the significance of which had not been appreciated. The membrane of the nose concerned in smell is supplied by the first pair of cranial nerves, the so-called olfactory nerves. Between this olfactory nerve and the nerve which supplies the diaphragm, the phrenic nerve, which is a cervical and not a cranial nerve, that is to say, comes from the central nervous system through the spinal cord in the neck and not directly from the brain, the older anatomists declared there was no connection. Morgagni pointed out that the mucous membrane of the nose is partly supplied also from the fifth pair of cranial nerves. From the fifth nerve, small branches of connection with the cervical nerves, as low even as the intercostal nerves, had been traced by Meckel. This shows the possibility of a nervous reflex; that is, of a communication of nerve impulses without the necessity for the intervention of the central nervous system.
This was the first direct tracing of distant reflex nervous action in human physiology. The problem of nervous reflexes was to remain obscure for more than a century later, until light was thrown upon it by the investigation of the French physiologist, Claude Bernard. Here, however, was the pregnant suggestion of the explanation of the seeming mystery. In subsequent cases Morgagni looked for the confirmation of his theory in this matter and found it. He pointed out that there was a relationship between the abdominal viscera and the olfactory mucous membrane of the nose. In one of his cases an epileptic seizure was always accompanied by a sense of discomfort in the upper abdominal region and a fetid odor. This odor was entirely subjective; that is, though extremely annoying to the patient it could not be noticed by any one else, even though the patient was close at hand and exhaled his breath at the moment of the observation.
This would seem to point to the fact that Morgagni suspected there were other connections between the special senses and important organs besides those which had been discovered by anatomists up to that time. As a matter of fact the so-called sympathetic nervous system does place all the organs of special sense in direct connection with the other important organs of the body. Morgagni's suspicions were to be confirmed by the discoveries made in this sympathetic system during the succeeding century.
Morgagni first of all seems to have realized what was the mechanism by which alcohol injures the human system. He pointed out that the excitation of the heart due to the action of alcohol was reflected in an overdistention of the arteries. This overdistention gradually led to degenerations in the arterial walls. The loss of elasticity thus induced brought on a disturbance of the circulation in the important organs of the body, and so gave rise to symptoms of wide-spread interference with organic functions.
Morgagni's studies in aneurism, that is, in the dilatation of bloodvessels, show how thoroughly he understood the mechanism of the formation of this serious pathological condition. He pointed out that the first noticeable disease change that occurs is a degeneration of the inner coat of the artery. This leads to the formation of furrows on the inner wall of the vessels and finally brings on weakness of the middle coat of the artery. He realized that the progress of these arterial changes is due to a large extent to blood pressure within the arteries. He felt, too, that blood pressure could be kept from being dangerously high by strict attention to diet limitation. If aneurisms are discovered in early stages the patient's life may well be prolonged by these simple measures. This idea contains the germ of the Tufnell treatment, which has been the most successful therapeutic measure for the treatment of aneurism in the nineteenth century.
The Italian anatomist's acumen led him to appreciate better than ever before in medical history the influence of the mind on the circulation. He pointed out that emotions have a powerful influence on the circulatory system in all its parts. How much the peripheral bloodvessels are affected can be seen in the tendency to blushing during certain forms of excitement, involving shame or embarrassment; on the contrary, pallor in anger, or indignation, or fright. He pointed out, too, that the heart is affected by such emotions and is sometimes strenuously excited and sometimes very much retarded. Morgagni understood that the influence of such emotions in especially excitable individuals leads to wear and tear on the bloodvessels and so to a shortening of lives. He thought of some aneurisms, even those affecting the large bloodvessels, might be caused by sudden intense emotions, and especially by violent efforts to suppress or conceal emotions. We know now, however, that these pathological conditions are due to human passions, but quite other than those which Morgagni had in mind.
It is interesting to note that comparative pathology--that is, the study of the diseases of animals as illustrating corresponding conditions in human beings--had already attracted the attention of the Bolognese school of medicine. Albertini, who had been a professor of Morgagni's, pointed out that aneurisms are rarely found in animals, because brutes were not subject to emotions as are human beings. Morgagni made still further observations in this line to confirm his own conclusions in the matter. For a time in his earlier life he devoted himself to the study of fishes, because they seemed to promise to throw light on certain problems in human anatomy and pathology.
How closely he studied pathological changes in tissues can be gathered from the fact that his observations led him to point out that aneurism of the aorta occurs most frequently at that part of the curvature of the aorta against which blood is constantly projected by the heart. The realization of the importance of this mechanical factor in the production of aneurism is one of the first successful results of carefully applied observation and knowledge of physical laws in the causation of changes in the tissues as opposed to elaborate theories with very little foundation in fact.
Variations in the pulse attracted his attention, and he was among the first to point out that the occurrence of flatulency is liable to cause disturbance of the heart's action and to bring on noticeable cardiac palpitation in the absence of any organic affection of the heart itself. Morgagni also pointed out that intermittence of the pulse may be due to nervous conditions. He showed that severe mental shock or trying emotions may cause irregularity of the heart's action and pulse intermittency. Some of his observations in this matter show an intuition with regard to the nerve supply of the heart that is quite beyond the anatomy of his time, and seems to indicate that he suspected the existence and function of the sympathetic system and also the existence of a special nerve supply to the small arteries.
Perhaps Morgagni's most penetrating evidence of insight in pathology and its relations to clinical medicine is with regard to tuberculosis. Over a century and a half ago he insisted on its contagiousness. He refused to make autopsies on patients who had died of tuberculosis, and his position in the matter was undoubtedly of the greatest service in directing the attention of his contemporaries, and especially those closely in contact with him, to the important question of intimate association with tuberculous patients as a potent factor in the acquirement of the disease, more potent even than heredity which then occupied all men's minds on this subject.
It might be deemed that this advanced position of Morgagni was due rather to intuitive abhorrence of the disease than to the conviction of actual observation, and that his conclusions were the result more of prejudice than of real knowledge. Any such opinion, however, is absolutely contradicted by the fact that he knew and understood better than any one of his generation the pathology of consumption. He pointed out at a time when any chronic affection of the lungs was liable to be considered consumption that there are a number of forms of chronic bronchitis that are not due to pthisis pulmonalis, but to other slow-running conditions within the lungs.
He anticipated very completely the present position of surgery with regard to the treatment of cancer. He advised the operative removal of these malignant tumors whenever possible. As Benjamin Ward Richardson points out, this advice was given evidently not with the idea that the disease could be always thus completely cured, but because early operation gave speediest relief of annoying symptoms and assured the greatest prolongation of life. Many other methods of removal of cancerous growths were suggested in Morgagni's time, as in our own, and many false promises made and false hopes raised by their advocates. He pointed out that the quickest, the safest, the surest and in the end, for the patient, the easiest method of removal is by the knife in the hands of the bold and skilful surgeon. After a century and a half of vauntedly great advance, especially in surgery, we are practically in the same position as when Morgagni's advice was penned, and his opinion remains practically as valuable to-day as then.
In another important point of medicine Morgagni seems to have anticipated the opinion of our own time. It was the custom to practise venesection very freely. On one or two occasions in his own lifetime Morgagni fell ill and venesection was recommended. His biographer says that he constantly refused this method of treatment, adding very naively, "and he who had often cured others by venesection would never allow this remedy to be used upon himself because, as I believe, he had a natural abhorrence to it."
It was an index of thoroughgoing independence of thought in those days to stand out, even for personal reasons, against the overwhelming tradition in favor of blood-letting. But Morgagni had well-grounded doubts as to the remedial efficacy of abstraction of blood, and at least avoided it in his own case.
Morgagni's life must have been in many ways ideally happy. Rewards for his scientific success began early in life, even before his professorship, and continued all during his long career. The Royal Society of England elected him a fellow in 1724; the Academy of Sciences of Paris made him a member in 1731. In 1735 the Imperial Academy of St. Petersburg conferred a like honor upon him. In 1754 the Academy of Berlin elected him to honorary membership.
His English biographer, Dr. William Cook, says quaintly that all the learned and great who came into his neighborhood did not depart without a visit to Morgagni. He was in correspondence with most of the great men of his time, and the terms of intimate relationship that this correspondence reveals are the best evidence of the estimation in which Morgagni was held, especially by the prominent scientists of his time. Among them were such men as Ruysch, Boerhaave, Sir Richard Mead, Haller and Meckel. This wide acquaintanceship of itself was a great distinction at a time when the means of communication were so much more limited than at present.
It is gratifying to think that Morgagni must have been enviably content in his private life, though, as usually happens when this is the case, very little is said explicitly on this subject. His untiring labor deserved the compensation of a loving domestic circle. During his retirement at Forli, after his graduation from the university and when, from overwork, his health failed him for a time, he married the descendant of a noble family of the town, Paola Vergieri by name, a companion for him who, biographers declare, could not have been surpassed in judgment or in affection. They had a family of fifteen children, eight of whom survived their father though he lived to the ripe age of eighty-seven years. There were three sons, one of whom died in childhood; another became a Jesuit and taught in the famous Jesuit school at Bologna whose magnificent building has now become the municipal museum, the Accademia delle Belle Arte. The third followed his father's profession, married and settled in Bologna, but died before his father, who assumed the care of his grandchildren. All Morgagni's daughters who grew up to womanhood, eight in number, became nuns in various religious orders.
The spirit of science had not disturbed the development of a homely simple faith in the family. The great Father of Pathology, far from being disturbed by the unselfish self-sacrifice of so many of his children, bore it not only with equanimity but even rejoiced at it. His relations to his children were ever most tender. After the suppression of the Jesuits, his son, who had been a member of the order, worked at science with his father at the University of Bologna and not without distinction.
The estimation in which Morgagni was held by his contemporaries can be judged from the fact that twice when invading armies had entered the Emilia and laid siege to Bologna, their commanders, as in old Greek history did the Grecian generals with regard to Pindar and Archimedes, gave strict orders that special care was to be taken that no harm come to Morgagni, and that his work was not to be hampered. Having lived his long life amidst the reverent respect of all who knew him, he died full of day and honors.
The great medical scientist whose work was to prove the foundation of modern pathology, and thus be the source of more blessings to mankind than ever even he dreamed of, remained in the midst of the reverence and gratitude of his generation, one of those beautifully simple characters whom all the world delights to honor. As a teacher he was the idol of his students. No great scientist who came to Italy felt that his journey had been quite complete unless he had had the privilege of an interview with Morgagni. This friend of Popes and of many of the European rulers was the happy father of a houseful of members of religious orders, and considered himself blest that so many of them had chosen the better part. He was himself all during his long life the ardent seeker after truth, who did well the work that came to his hand and followed his conscience in sincere simplicity of heart and reaped his personal reward in the peace that is beyond understanding to those who have not the gift of faith to appreciate the things that are beyond the domain of sense.
AUENBRUGGER, THE INVENTOR OF PHYSICAL DIAGNOSIS
AUENBRUGGER,
THE INVENTOR OF PHYSICAL DIAGNOSIS.
At the present time the most interesting development in medicine is the gradual reduction of the death rate from tuberculosis. This is entirely due to the fact that the disease can now be recognized very early in its course, and that, as a consequence, the treatment may be begun before serious damage has been inflicted on the lungs. Under the circumstances, the disease formerly supposed incurable has become according to all the best modern authorities one of the most tractable of infectious diseases. In their recent lectures in Philadelphia, before the Phipps Institute for the Prevention and Cure of Consumption, such distinguished medical authorities as Dr. Trudeau, of Saranac; Professor Osler, of Johns Hopkins, and Professor G. Simms Woodhead, of Cambridge, England, insist on the absolute curability of tuberculosis when it is taken in time. Professor Woodhead particularly asserts that there has been entirely too much pessimism in this matter, even among physicians.
This present confidence with regard to the successful treatment of pulmonary consumption is due to the fact that the diagnosis can be made early. The glory of this early recognition depends entirely on two men--Auenbrugger, of Vienna, and Laennec, of Paris. To Auenbrugger, whose work was done nearly half a century before that of Laennec, must be given the credit of having first approached the problem of differentiating diseases of the lungs from one another by methods which were so objectively practical that every practitioner of medicine could, after having become expert in their employment, use them with absolute confidence in his diagnosis.
Modern medical science and practice acknowledges very gratefully its deep obligations to what is known as the Vienna school of medicine. It is not a little surprising to find that it was the practical side of medicine particularly which was developed at Vienna, since the inhabitants of the Austrian capital, while supposed to have artistic tastes far above the average, are usually considered to be among the most impractical people in Europe. For over one hundred and fifty years, however, the medical department of the University of Vienna has always ranked among the first in the world. Many of the Viennese professors of medicine have been acknowledged as the greatest teachers of their time. Beginning with Van Swieten and De Haen during the second half of the eighteenth century, the medical department of the University of Vienna has scarcely ever been without at least one of the leading lights of medicine in Europe. Wunderlich, Rokitansky and Skoda were, in the middle of the nineteenth century, the greatest medical men of their time. Hebra, Billroth and Nothnagel worthily continued the tradition of medical greatness in the Austrian capital. Even at the present time, notwithstanding the great advance in medicine and medical teaching that has come over all Europe, it is generally conceded that the best place in the world to study clinical medicine--that is, to study illness at the bedside of the patient--is the famous Allgemeines Krankenhaus, the General Hospital of Vienna.
The Austrian Empress, Maria Theresa, interested in everything that could prove to be for the benefit of her people, invited the distinguished pupil of Boerhaave, Van Swieten, to become her family physician, and encouraged him in the foundation of a clinical medical school at Vienna. Van Swieten soon came to occupy a very prominent place at Court. When he was invited from Holland, on the recommendation of the sister of the Empress, there was no heir to the Austrian crown, though one had been anxiously looked for for several years. Heirs to the number of sixteen in all blessed the imperial family in the next twenty-five years, and Van Swieten became the confidential adviser of the reigning monarchs in polity as well as in medicine. Accordingly, when he suggested the invitation of De Haen, who had also been a pupil of Boerhaave, the suggestion was promptly accepted, and the Leyden colleagues became the founders of the Old Vienna School of Medicine, as it is called. They established the tradition of bedside teaching, of actual practical experience in the treatment of patients, and of the collection of detailed information of every feature of cases that could possibly be helpful for diagnosis. They also established the custom of demonstrations on pathological material with confrontation of the diagnostic conclusions during life and the findings of the postmortem examination in fatal cases, which, down to our own day, makes Vienna an ideal place for serious post-graduate work in clinical medicine.
It was not long after the establishment of the clinic on these broad lines at Vienna before the first important fruit of the new teaching method was to be gathered. Curiously enough, however, this initial advance in practical medicine did not come from one of the distinguished heads of the clinic, but from a comparatively young man of no previous reputation. The greatest discovery ever made at Vienna is due to Auenbrugger, an unassuming practitioner of medicine, who came from the Austrian province of Styria, or, as it is called in German, the Steiermark, about the middle of the eighteenth century. He was the son of a small hotel keeper of Gratz, and, after making his medical studies in Vienna, he remained at the capital for some years, doing hospital work.
While thus engaged, the young Styrian, who attracted very little attention except for his affability, and who made no pretension to special knowledge or genius in observation, laid the first stone in the structure of modern exact diagnosis of pulmonary disease, and cleared up many of the obscurities in which all affections of the chest had been shrouded before his time. Having accomplished this noteworthy achievement before he was forty years of age, Auenbrugger then quietly settled down to be an ordinary medical practitioner in the Austrian capital, with a special reputation for his knowledge of chest diseases, and for kindly ways that gave him as much interest in his poor patients as in those that could afford to pay handsomely for his services.
Leopold Auenbrugger, afterward Edler von Auenbrug--a term about equivalent to the English "Knight of Auenbrug"--who thus stands at the head of modern medical diagnosis, was born on the 19th of November, 1722, at Gratz, in Lower Austria. His early education was received at Gratz, and it seems to have been of rather a comprehensive character, for Auenbrugger, later in life, was a member of the elegant literary circles in Vienna and a welcome friend at the tables of cultured and distinguished fellow-townsmen. It will be recalled, by those who remember German literature, that at this time Vienna was the centre of culture in Germany, attracting many literary men--as, for instance, the two Schlegels--from other parts of Germany.
Auenbrugger's father was of the lower middle class, the proprietor of the Gasthaus Zum Schwarzen Mohren, in one of the suburbs of the city of Gratz, but also the owner of another hotel in the city itself, so that he was able, by making some sacrifices, to afford his son a university and medical education in Vienna. The family were not in very affluent circumstances, however, and in this Auenbrugger was in the same condition as many other of the distinguished medical men who have made important original discoveries. Volta, Laennec, Johann Mueller, Helmholtz, Pasteur and Virchow were all the sons of comparatively poor parents, and had to eke out their university education by doing teaching work as soon as they were considered capable.
Auenbrugger's studies in medicine were pursued under the well-known Baron Van Swieten. Van Swieten was, as has been said, one of the most distinguished of Boerhaave's pupils, and devoted most of his life to writing a set of commentaries on Boerhaave's aphorisms and editing his master's work. Van Swieten's greatest ambition was to make the Austrian capital the home of the great clinical school of medicine and a pilgrimage at least as attractive for physicians seeking to study practical medicine at the bedside as had been his own alma mater at Leyden. He was of so great administrative ability that Maria Theresa made him one of her state counsellors.
With all the influence of the government behind him, then, it is not surprising that Van Swieten succeeded in his very laudable project of establishing a great medical school at Vienna.
It was fortunate that Auenbrugger made his medical studies under such good auspices. We have no details of his student life nor of his success in his examinations. Even as a student his engagement of marriage to Marianna von Priesterberg was announced. The formal marriage ceremony took place in 1754, when Auenbrugger was about thirty-two years of age. His wife seems to have had a dowry, and this enabled Auenbrugger to begin his medical career in Vienna. Some years before this, as a young graduate physician, he had accepted the position of resident medical attendant at the Spanish military hospital of the Holy Trinity in Vienna. This hospital was large and important and provided manifold opportunities for clinical study. Its wards were frequently drawn on by the clinical department of the University of Vienna for cases to be demonstrated before the students.
This fact was sufficient to make Auenbrugger's position of great educative value for him. Mistakes in diagnosis would be apt to be discovered, since the interesting cases were reviewed by some of the best physicians of the time in Europe. His position carried with it no salary beyond his maintenance, but proved well worth the time he gave it, since it developed in him habits of careful investigation. Just ten years after he began his work at this hospital he published the little book called "Inventum Novum," or new discovery, on which his reputation depends. It was written in Latin, and its full title ran: "A New Discovery that Enables the Physician, from the Percussion of the Human Thorax, to Detect the Diseases Hidden within the Chest."
Altogether his little manual probably does not contain much more than ten thousand words. It is perhaps two or three times as long as thousands of medical articles published every year in our modern medical journals. It contains, however, one of the most important discoveries in the whole history of medicine. One of the best diagnosticians of the nineteenth century, Skoda, the distinguished head of the Vienna school of sixty years ago, calls the discovery that Auenbrugger outlined so unpretentiously "the beginning of modern diagnosis," and hailed Auenbrugger himself as the founder of the new science of diagnosis that was to prove so fruitful of good in the prevention of human suffering.
It is interesting to compare Auenbrugger's little book with Van Swieten's commentaries on Boerhaave's works, which were published in some eight huge volumes. Van Swieten's successor, De Haen, an equally illustrious contemporary of Auenbrugger, published about the same time some eighteen volumes on the science of medicine. Neither of these works is ever consulted now, except by some enthusiastic student of the history of medicine, who wishes to clear up a point in medical historical development; but Auenbrugger's unpretending monograph is, and will ever remain, a classic. Practically nothing has been needed to complete the clinical usefulness of his discovery. Like Laennec, whose work was done just half a century later, he had the genius to realize what the possibilities and the limitations of his discovery are, and he completed it in all its details before giving it to the public.
Add to tbrJar First Page Next Page Prev Page