Read Ebook: Are the Planets Inhabited? by Maunder E Walter Edward Walter
Font size:
Background color:
Text color:
Add to tbrJar First Page Next Page Prev Page
Ebook has 453 lines and 46862 words, and 10 pages
It is now an old story, but still possessing its interest, how Fraunhofer analysed the light of the Sun by making it pass through a narrow slit and a prism, and found that the broad rainbow-tinted band of light so obtained was interrupted by hundreds of narrow dark lines, images in negative of the slit; and how Kirchhoff succeeded in proving that two of these dark lines were caused by the white light of the solar photosphere having suffered absorption at the Sun by passing through a stratum of glowing sodium vapour. From that time forward it has been known that the Sun is surrounded by an atmosphere of intensely heated gases, among which figure many of those elements familiar to us in the solid form on the Earth, such as iron, cobalt, nickel, copper, manganese, and the like. These metals, here the very types of solid bodies, are permanent gases on the Sun.
The Sun, then, is in an essentially gaseous condition, enclosed by the luminous shell which we term the photosphere. This shell Prof. C. A. Young and the majority of astronomers regard as consisting of a relatively thin layer of glowing clouds, justifying the quaint conceit of R. A. Proctor, who spoke of the Sun as a "Bubble"; that is, a globe of gas surrounded by an envelope so thin in comparison as to be a mere film. There has been much difference of opinion as to the substance forming these clouds, but the theory is still widely held which was first put forward by Dr. Johnstone Stoney in 1867, that they are due to the condensation of carbon, the most refractory of all known elements. Prof. Abbot, however, refuses to believe in a surface of this nature, holding that the temperature of the Sun is too high even at the surface to permit any such condensation.
The application of the spectroscope to astronomy is not confined to the Sun, but reaches much further. The stars also yield their spectra, and we are compelled to recognize that they also are suns; intensely heated globes of glowing gas, rich in the same elements as those familiar to us on the Earth and known by their spectral lines to be present on the Sun. The stars, therefore, cannot themselves be inhabited worlds any more than the Sun, and at a stroke the whole of the celestial luminaries within the furthest range of our most powerful telescopes are removed from our present search. Only those members of our solar system that shine by reflecting the light of the Sun can be cool enough for habitation; the true stars cannot be inhabited, for, whatever their quality and order, they are all suns, and must necessarily be in far too highly heated a condition to be the abode of life. Many of them may, perhaps, be a source of light and heat to attendant planets, but there is no single instance in which such a planet has been directly observed; no dark, non-luminous body has ever been actually seen in attendance on a star. Many double or multiple stars are known, but these are all instances in which one sun-like body is revolving round another of the same order. We see no body shining by reflected light outside the limits of the solar system. Planets to the various stars may exist in countless numbers, but they are invisible to us, and we cannot discuss conditions where everything is unknown. Enquiry in such a case is useless, and speculation vain.
The stars, as revealed to us by the spectroscope are all of the same order as the Sun, but they are not all of the same species. Quite a large number of stars, of which Arcturus is one of the best-known examples, show spectra that are essentially the same as that of the Sun, but there are other stars of which the spectra bear little or no semblance to it. Nevertheless, it remains true that, on the whole, stellar spectra bear witness to the presence of just the same elements as we recognize in the Sun, though not always in the same proportions or in the same conditions--hydrogen, calcium, sodium, magnesium, iron, titanium, and many more are recognized in nearly all. It is true that not all the known terrestrial elements have yet been identified in either Sun or stars; but, in general, those missing are either "negative" elements like the halogens, or elements of great atomic weight like mercury and platinum. That elements of one class should, as a rule, reveal their presence in Sun and stars wherever these are placed, and, correspondingly, that other classes should as generally fail to show themselves, indicate that such absence is more likely to be due to the general structure of the stellar photospheres and reversing layers than to any irregularity in the distribution of matter in the universe. It is easy, for example, to conceive that the heavy metals may lie somewhat deeper down within the Sun or star than those of low atomic weight. In the case of the Sun, there seems a clear connection between atomic weight and the distinctness with which the element is recognized in the spectrum of the photosphere, the lower atomic weights showing themselves more conspicuously.
Hydrogen is seen in the spectra of nearly all stars, and also in those of nebulae. The elemental lines of oxygen are not indeed seen in stellar spectra, but that the element is present is shown by the flutings of titanium oxide which distinguish stars like Antares. Nitrogen and carbon again are not recognized by their elemental lines, but the lines of cyanogen are seen in the spectra of comets and of sunspots, and hydrocarbon flutings in the spectra of comets and red stars; while in a few of the hottest stars even sulphur has recently been identified. All the five organo-genetic elements are therefore abundantly diffused through space; the materials for protoplasm, "the albuminous substance with water," are at hand everywhere. This being so, it is reasonable to infer that if organic life exists elsewhere than on this Earth, its essential feature, there as here, is the metabolism of nitrogenous carbon compounds in association with protoplasm.
But it is objected that "we are not yet able to identify all the lines in solar or stellar spectra; may not some of these lines be due to elements of which we know nothing here, and may not such new elements form complex and unstable compounds with each other, or with some of those familiar to us, that would take the place of the five organo-generators, and so give rise to a physical basis of life, different from that we know on this Earth?"
But the development of Mendel?eff's Periodic Law has shown that the elements are not to be regarded as disconnected entities. The Law as given in Mendel?eff's own words, runs: "The properties of the elements as well as the forms and properties of their compounds are in periodic dependence on, or form a periodic function of the atomic weights of the elements." In other words, they form a series, not only as it regards their atomic weights, but also as it regards their own properties and the forms and properties of their compounds. We are no longer at liberty, as we might have been many years ago, to call into fancied existence new elements having no relation in their properties and compounds to those with which we are acquainted. New elements, no doubt, will be discovered in the future, as in the past; and indeed we may be able to discover them and learn their atomic weights and properties without ever being able to handle them in a terrestrial laboratory.
Water is essential for life here, but the quality in water which restricts the range of terrestrial life is that it freezes at 0? Centigrade, and boils at 100? Centigrade; it is only in the liquid state during the intermediate range of 100 degrees. In order to extend the range for living organisms, we should have, therefore, to discover a new vehicle, that, possessing all the other qualities of water, is not restricted to the liquid state within the same limits. But we are at once met with the difficulty that the first essential for the vehicle is that it should be abundant, and there are no other elements more abundant than hydrogen and oxygen. This new vehicle must, like water, be both neutral and stable, or it would itself interfere with the highly unstable compounds that are a necessity for metabolism. And, if we could find this new vehicle, liquid at temperatures outside the 0? to 100? Centigrade, have we any reason to suppose that protoplasm itself would be able to endure these outlying temperatures? Looking through the range of substances available, we can only say that none other presents itself as approaching water in suitability for its essential office. If we, ourselves, were able to create a vehicle, could we imagine one more perfectly suited?
THE MOON
The Sun and Moon offer to our sight almost exactly the same apparent diameters; to the eye, they look the same size. But as we know the Sun to be 400 times as distant as the Moon, it is necessarily 400 times as large; its surface must exceed that of the Moon by the square of 400, or 160,000; its volume by the cube of 400, or 64,000,000. As the Sun is of low mean density, its mass does not exceed that of the Moon in quite the same high ratio; but it is equal in mass to
Compared with the Sun, the Moon is therefore an insignificant little ball--a mere particle; but as a world for habitation it possesses some advantages over the Sun. The first glance at it in a telescope is sufficient to assure the observer that he is looking at a solid, substantial globe. It is not only substantial, it is rugged; its surface is broken up into mountains, hills, valleys, and plains; the mountains stand out in sensible relief; it looks like a ball of solid silver boldly embossed and chased.
So far all is to the good for the purpose of habitation. Wherever men are, they must have a solid platform on which to stand; they must have a stable terrene whereon their food may grow, and this the Moon could supply. "The Earth's gloom of iron substance" is necessary for man here, and the Moon appears to offer a like stability.
Another favourable condition is that we know that the Moon receives from the Sun a sufficient supply of light and heat. Each square yard of its surface receives, on the average, the same amount of light and heat that would fall upon a square yard on the Earth that was presented towards the Sun at the same inclination; and we know from our own experience that this is sufficient for the maintenance of life.
And the Moon is near enough for us to subject her to a searching scrutiny. Every part of the hemisphere turned toward us has been repeatedly examined, measured, and photographed; to that extent our knowledge of its topography is more complete than of the world on which we live. There are no unexplored regions on our side of the Moon. The great photographs taken in recent years at the observatories of Paris and of the University of Chicago have shown thousands of "crater-pits," not more than a mile across; and narrow lines on the Moon's surface have been detected with a breadth less than one-tenth of this. An elevation on the Moon, if it rose up abruptly from an open plain, would make its presence apparent by the shadow which it would cast soon after sunrise or near sunset; in this way an isolated building, if it were as large as the great pyramid of Ghizeh, would also show itself, and all our great towns and cities would be apparent as areas of indistinct mottling, though the details of the cities would not be made out.
But if vegetation took the same forms on the Moon as on the Earth, and passed through the same changes, we should have no difficulty in perceiving the evidence of its presence. If we were transported to the Moon and turned our eyes earthward, we should not need the assistance of any telescope in order to detect terrestrial changes which would be plainly connected with the seasonal changes of vegetation. The Earth would present to us a disc four times the apparent diameter of the Moon, and on that disc Canada would offer as great an area as the whole of the Moon does to us. We could easily follow with the naked eye the change from the glittering whiteness of the aspect of Canada when snow-covered in winter, to the brown, green and gold which would succeed each other during the brighter months of the year. And this type of change would alternate between the northern and southern hemispheres, for the winter of Canada is the summer of the Argentine, and conversely.
We ought, therefore, to have no difficulty in observing seasonal changes on the Moon, if such take place. But nothing of the kind has ever been remarked; no changes sufficiently pronounced for us to be sure of them are ever witnessed. Here and there some slight mutations have been suspected, nearly all accomplishing their cycle in the course of a lunar day; so that it is difficult to separate them from changes purely apparent, brought about by the change in the incidence of the illumination.
The difference in appearance of a given area on the Moon when viewed under a low Sun and when the Sun is on the meridian is very striking. In the first case everything is in the boldest relief; the shadows are long and intensely black; the whole area under examination in the telescope seems as if it might be handled. Under the high Sun, the contrasts are gone; the scenery appears flat, many of the large conspicuous markings are only recognized with difficulty. Thus the terse remark of M?dler, "The full Moon knows no Maginus," has become a proverb amongst selenographers; yet Maginus is a fine walled plain some eighty miles in diameter, and its rampart attains a height in parts of 14,000 feet. Maginus lies near Tycho, which has been well named "the lunar metropolis," for from it radiates the principal system of bright streaks conspicuous on the full Moon. These white streaks appear when the shadows have vanished or are growing short; they are not seen under a low Sun.
The changes which appear to take place in the lunar formations owing to the change in their illumination are much more striking and varied than would be anticipated. But the question arises whether all the changes that are associated with the progress of the lunar day can be ascribed to this effect. Thus, Prof. W. H. Pickering writes concerning a well-known pair of little craters of about nine miles in diameter, "known as Messier and Messier A, situated side by side not far from the centre of the Mare Fecunditatis. When the Sun rises first on them, the eastern one, A, is triangular and larger than Messier, which latter is somewhat pear-shaped. About three days after sunrise they both suddenly turn white, Messier rapidly grows in size, soon surpasses A, and also becomes triangular in shape. Six days after sunrise the craters are again nearly of the same size, owing to the diminution of Messier. The shape of A has become irregular, and differs in different lunations. At nine days after sunrise the craters are exactly alike in size and shape, both now being elliptical, with their major axes lying in a nearly N. and S. direction. Just before sunset A is again the larger, being almost twice the size of Messier."
Some observers explain this cycle of changes as due merely to the peculiar contour of the two objects, the change in the lighting during the lunar day altering their apparent figures. Prof. W. H. Pickering, on the other hand, while recognizing that some portion of the change of shape is probably due to the contour of the ground, conceives that, in order to explain the whole phenomenon, it is necessary to suppose that a white layer of hoar frost is formed periodically round the two craters. It is also alleged that whereas M?dler described the two craters as being exactly alike eighty years ago, Messier A is now distinctly the larger; but it is very doubtful whether M?dler's description can be trusted to this degree of nicety. If it could, this would establish a permanent change in the actual structure of the lunar surface at this point.
There are several other cases of the same order of ambiguity. The most celebrated is Linn?, a white spot about six miles in diameter on the Mare Serentatis. This object appears to change in size during the progress of the lunar day, and, as with Messier, some selenographers consider that it has also suffered an actual permanent change in shape within the last sixty or seventy years. Here again the evidence is not decisive; Neison is by no means convinced that a change has taken place, yet does not think it impossible that Linn? may once have been a crater with steep walls which have collapsed into its interior through the force of gravity.
Another type of suspected change is associated with the neighbourhood of Aristarchus, the brightest formation on the Moon, so bright indeed that Sir William Herschel, observing it when illuminated by earthshine in the dark portion of the Moon, thought that he was watching a lunar volcano in eruption. In 1897, on September 21, the late Major Molesworth noticed that the crater was at that time under the rays of the setting Sun, and filled with shadow, and the inner terraces, which should have been invisible, were seen as faint, knotted, glimmering streaks under both the eastern and western walls, and the central peak was also dimly discernible. He thought this unusual lighting up of rocks on which the Sun had already set might be due either to phosphorescence produced by long exposure to the Sun's rays, or to inherent heat, or to reflected glare from the western rampart. Still more important, both Major Molesworth and Mr. Walter Goodacre, each on more than one occasion, observed what seemed to be a faint bluish mist on the inner slope of the east wall, soon after sunrise, but this was visible only for a short time. Other selenographers too, on rare occasions, have made observations accordant with these, relating to various regions on the Moon.
These, and a few other similar instances, are all that selenography has to offer by way of evidence of actual lunar change. Of seeming change there is abundance, but beyond that we have only cases for controversy, and one of the most industrious of the present-day observers of the Moon, M. Philip Fauth, declares that "as a student of the Moon for the last twenty years, and as probably one of the few living investigators who have kept in practical touch with the results of selenography, he is bound to express his conviction that no eye has ever seen a physical change in the plastic features of the Moon's surface."
In this matter of change, then, the Earth and Moon stand in the greatest contrast to each other. As we have seen, from the view-point of the Moon, the appearance of the Earth would change so manifestly with the progress of the seasons that no one could fail to remark the difference, even though observing with the naked eye. But from the view-point of the Earth, the Moon when examined by our most experienced observers, armed with our most powerful telescopes, offers us only a few doubtful enigmatical instances of possible change confined to small isolated localities; we see no evidence that the "gloom of iron substance" below is ever concealed by a veil of changing vegetation, or that "between the burning light and deep vacuity" of the heavens above, the veil of the flying vapour has ever been spread out. We see the Moon so clearly that we are assured it holds no water to nourish plant life; we see it so clearly because there is no air to carry the vapour that might dim our view.
Life is change, and a planet where there is no change, or where that change is very small, can be no home for life. The "stability and insensibility" are indeed required in the platform upon which life is to appear, but there must be the presence of "the passion and the perishing," or life will be unable to find a home.
We infer the absence of water and air from the Moon not only from the unchanging character of its features and the distinctness with which we see them; we are able to make direct observations. Galileo, the first man to observe the Moon to better advantage than with the naked eye, was not long before he decided that the Moon contained no water, for though Milton, in a well-known passage, makes Galileo discover
"Rivers or mountains on her spotty globe,"
We have evidence just as direct that there is no atmosphere. This is very strikingly shown when the Moon, in its monthly progress among the stars, passes before one of them and occults it. Such an occultation is instantaneous, and is particularly impressive when either a disappearance or a reappearance occurs at the defective limb; that is to say, at the limb which is not illuminated by the Sun, and is therefore invisible. The observer may have a bright star in the field of view, showing steadily in a cloudless sky; there is not a hint of a weakening in its light; suddenly it is gone. The first experience of such an observation is most disconcerting; it is hardly less disconcerting to observe the reappearance at the dark limb. One moment the field of view of the telescope is empty; the next, without any sort of dawning, a bright star is shining steadily in the void, and it almost seems to the observer as if an explosion had taken place. If the Moon had an atmosphere extending upwards from its surface in all directions and of any appreciable density, an occultation would not be so exceedingly abrupt; and, in particular, if the occultation were watched through a spectroscope, then, at the disappearance, the spectrum of the star would not vanish as a whole, but the red end would go first, and the rest of the spectrum would be swept out of sight successively, from orange to the violet. This does not happen; the whole spectrum goes out together, and it is clear that no appreciable atmosphere can exist on the Moon. In actual observation so inappreciable is it that its density at the Moon's surface is variously estimated as 1/300th of that of the Earth by Neison, and as 1/10000th by W. H. Pickering. If the Moon possessed an atmosphere bearing the same proportion to her total mass as we find in the case of the Earth, she would have a density of one-fortieth of our atmosphere at the sea level.
A larger proportion, therefore, of the solar rays are employed in heating the soil of the Moon than in heating that of the Earth, and in this connection the effect of an important difference between the two worlds must be noted. The Earth rotates on its axis in 23 hours 56 minutes 4 seconds, the mean length of its rotation as referred to the Sun being 24 hours. The rotation of the Moon, on the other hand, takes 27 days 7 hours 43 minutes to accomplish, giving a mean rotation, as referred to the Sun, of 29 days 12 hours 44 minutes. The lunar surface is therefore exposed uninterruptedly to the solar scorching for very nearly fifteen of our days at a time, and it is, in turn, exposed to the intense cold of outer space for an equal period. As the surface absorbs heat so readily, it must radiate it as quickly; hence radiation must go on with great rapidity during the long lunar night. Lord Rosse and Prof. Very have both obtained measures of the change in the lunar heat radiation during the progress of a total eclipse of the Moon, with the result that the heat disappeared almost completely, though not quite at the same time as the light. Prof. Langley succeeded in obtaining from the Moon, far down in the long wave lengths of the infra-red, a heat spectrum which was only partly due to reflection from the Sun; part coming from the lunar soil itself, which, having absorbed heat from the Sun, radiated it out again almost immediately. In 1898, Prof. Very, following up Langley's line of work, concluded that the temperature of the lunar soil must range through about 350? Centigrade, considerably exceeding 100? at the height of the lunar day, and falling to about the temperature of liquid air during the lunar night. So wide a range of temperature must be fatal to living organisms, particularly when the range is repeated at short, regular intervals of time. But this range of temperature comes directly from the length of the Moon's rotation period; for the longer the day of the Moon, the higher the temperature which may be attained in it; the longer the night, the greater the cold which will in turn be experienced. We learn, therefore, that the time of rotation of a planet is an important factor in its habitability.
THE CANALS OF MARS
Both of the two worlds best placed for our study are thus, for different reasons, ruled out of court as worlds for habitation. The Sun by its vastness, its intolerable heat and the violence of its changes, has to be rejected on the one hand, while the Moon, so small, and therefore so rigid, unchanging and bare, is rejected on the other.
Of the other heavenly bodies, the planet Mars is the one that we see to best advantage. Two other planets, Eros and Venus, at times come nearer to us, but neither offers us on such occasions equal facilities for their examination. But of Mars it has been asserted not only that it is inhabited, but that we know it to be the case, since the evidence of the handiwork of intelligent beings is manifest to us, even across the tremendous gulf of forty or more million miles of space.
A claim so remarkable almost captures the position by its audacity. There is a natural desire among men to believe the marvellous, and the very boldness of the assertion goes no small way to overcome incredulity. And when we consider how puny are men as we see them on this our planet, how minute their greatest works, how superhuman any undertaking would be which could demonstrate our existence to observers on another planet, we must admit that it is a marvel that there should be any evidence forthcoming that could bear one way or another on the solution of a problem so difficult.
The first fact that we have to remember with regard to the planet Mars is the smallness of its apparent size. To the eye it is nearly a star--a point of light without visible surface. It is almost twice the size of the Moon in actual diameter, but as its mean distance from the Earth is 600 times that of the Moon, its mean apparent diameter is 300 times smaller. We cannot, however, watch Mars in all parts of its orbit; it is best placed for observation, and, therefore, most observed, when in opposition, and oppositions may be favourable or unfavourable. At the most favourable opposition, Mars is 140 times as distant as the Moon; at the least favourable, 260 times; so that on such occasions its apparent size varies from 1/70th of the diameter of the Moon to 1/130th. But a telescope with a magnifying power of 70 could never, under the most perfect conditions, show Mars, even in the closest opposition, as well as the Moon is seen with the naked eye, for the practical magnifying power of a telescope is never as great as the theoretical. In practice, a child's spy-glass magnifying some six diameters will show the full Moon to better advantage than Mars has ever been seen, even in our most powerful telescopes.
The small apparent size of the planet explains how it was that Galileo does not seem to have been able to detect any markings upon it. In 1659, Huyghens laid the foundation stone of areography by observing some dark spots, and determining from their apparent movements that the planet had a rotation on its axis, which it accomplished in about the same time as the Earth. Small and rough as are the drawings that Huyghens made, the identification of one or two of his spots is unmistakable. Seven years later, in 1666, both Cassini and Hooke made a number of sketches, and those by Hooke have been repeatedly used in modern determinations of the rotation period of the planet. The next great advance was made by Sir William Herschel, who, during the oppositions of 1777, 1779, 1781, and 1783, determined the inclination of the axis of Mars to the plane of its orbit, measured its polar and equatorial diameters, and ascertained the amount of the polar flattening. He paid also special attention to two bright white spots upon the planet, and he showed that these formed round the planet's poles and increased in size as the winter of each several hemisphere drew on and diminished again with the advance of summer, behaving therefore as do the snow caps of our own polar regions.
The next stage in the development of our knowledge of Mars must be ascribed to the two German astronomers, Beer and M?dler, who made a series of drawings in the years 1830, 1832 and 1837, by means of a telescope of 4 inches aperture, from which they were able to construct a chart of the entire globe. This chart may be considered classic, for the features which it represents have been observed afresh at each succeeding opposition. Mars, therefore, possesses a permanent topography, and some of the markings in question can be identified, not only in the rough sketches made by Sir William Herschel, but even in those made by Hooke and Cassini as far back as the year 1666. In the forty years that followed, the planet was studied by many of the most skilled observers, particularly by Mr. J. N. Lockyer in 1862, and the Rev. W. R. Dawes in 1864. In 1877, the late Mr. N. E. Green, drawing-master to Queen Victoria, and a distinguished painter in water colours, made a series of sketches of the planet from a station in the island of Madeira 2000 feet above sea-level. When the opposition was over, Mr. Green collected together a large number of drawings, and formed a chart of the planet, much richer in detail than any that had preceded it, and from his skill, experience and training as an artist he reproduced the appearance of the planet with a fidelity that had never been equalled before and has never been surpassed since. At this time it was generally assumed that Mars was a miniature of our own world. The brighter districts of its surface were supposed to be continents, the darker, seas. As Sir William Herschel had already pointed out long before, the little world evidently had its seasons, its axis being inclined to the plane of its orbit at much the same angle as is the case with the Earth; it had its polar caps, presumably of ice and snow; its day was but very little longer than that of the Earth; and the only important difference seemed to be that it had a longer year, and was a little further off the Sun. But the general conclusion was that it was so like the Earth in its conditions that we had practically found out all that there was to know; all that seemed to be reserved for future research was that a few minor details of the surface might be filled in as the power of our telescopes was increased.
There is no need to pass in review the whole of the immense mass of observations that have been accumulated since Schiaparelli brought out the first of his great Memoirs. That Memoir gave rise to an immediate controversy, for many astronomers of skill and experience had observed the planet in 1877 without detecting the network of lines which Schiaparelli had revealed, and it was natural that they should feel some reluctance in accepting results so strange and novel. But little by little this controversy has passed. We now know that the "canals" vary much in their visibility, and "curiously enough the canals are most conspicuous, not at the time the planet is nearest to the Earth and its general features are in consequence best seen, but as the planet goes away the canals come out. The fact is that the orbital position and the seasonal epoch conspire to a masking of the phenomena." This was the chief reason why Schiaparelli's discoveries seemed at first to stand so entirely without corroboration; the "canals" did not become conspicuous until after most observers had desisted from following the planet. Another reason was that, in 1877, Mars was low down in the sky for northern observatories, and good definition is an essential for their recognition. But the careful examination of drawings made in earlier oppositions, especially those made by Dawes and Green, afforded confirmation of not a few of Schiaparelli's "canals"; even in 1877 a few of the easiest and most conspicuous had been delineated by other astronomers before any rumour of Schiaparelli's work had come abroad, and as Mars came under observation again and again at successive oppositions, the number of those who were able to verify Schiaparelli's discoveries increased. It has now long been known that the great Italian astronomer was not the victim of a mere optical illusion; there were actual markings on the planet Mars where he had represented them; markings which, when seen under like conditions and with equal instrumental equipment, did present the appearance of straight, narrow lines. The "canals of Mars" are not mere figments of the imagination, but have a real objective basis.
In 1894, Mr. Percival Lowell founded at Flagstaff, Arizona, U.S.A., a well-equipped observatory for the special study of Mars, and he has continued his scrutiny of the planet from that time to the present with the most unrelaxing perseverance. The chief results that he has obtained have been the detection of many new "canals"; the discovery of a number of dark, round dots, termed by him "oases," at the junctions of the "canals"; and the demonstration that the "canals" and certain of the dusky regions are subject to strictly seasonal change, as really as the polar caps themselves. In addition, he has formed the conclusion, which he has supported with much ingenuity and skill, that the regularity of the "canals" and "oases" quite precludes the possibility of their being natural formations. Hence there has arisen the second controversy: that on the nature of the "canals"; for Mr. Lowell considers that their presence proves the existence of inhabitants on Mars, who, by means of a Titanic system of irrigation, are fighting a losing battle against the gradual desiccation of their planet.
"Organic life needs water for its existence. This water we see exists on Mars, but in very scant amount, so that if life of any sort exists there, it must be chiefly dependent on the semi-annual unlocking of the polar snows for its supply, inasmuch as there are no surface bodies of it over the rest of the planet. Now the last few years, beginning with Schiaparelli in 1877, and much extended since at Flagstaff, have shown:
"The surface of the planet to be very curiously meshed by a fine network of lines and spots.
"Now if one considers first the appearance of this network of lines and spots, and then its regular behaviour, he will note that its geometrism precludes its causation on such a scale by any natural process and, on the other hand, that such is precisely the aspect which an artificial irrigating system, dependent upon the melting of the polar snows, would assume. Since water is only to be had at the time it is there unlocked, and since for any organic life it must be got, it would be by tapping the disintegrated cap, and only so, that it could be obtained. If Mars be inhabited, therefore, it is precisely such a curious system we should expect to see, and only by such explanation does it seem possible to account for the facts.
"Confronting the observer are lines and spots that but impress him the more, as his study goes on, with their non-natural look. So uncommonly regular are they, and on such a scale as to raise suspicions whether they can be by nature regularly produced" .
"... Unnatural regularity, the observations showed, betrays itself in everything to do with the lines: in their surprising straightness, their amazing uniformity throughout, their exceeding tenuity, and their immense length" .
"As a planet ages, its surface water grows scarce. Its oceans in time dry up, its rivers cease to flow, its lakes evaporate .... Now, in the struggle for existence, water must be got.... Its procuring depends on the intelligence of the organisms that stand in need of it.... As a planet ages, any organisms upon it will share in its development. They must evolve with it, indeed, or perish. At first they change only, as environment offers opportunity, in a lowly, unconscious way. But, as brain develops, they rise superior to such occasioning.... The last stage in the expression of life upon a planet's surface must be that just antecedent to its dying of thirst.... With an intelligent population this inevitable end would be long foreseen.... Both polar caps would be pressed into service in order to utilize the whole available supply and also to accommodate most easily the inhabitants of each hemisphere" .
"That intelligence should thus mutely communicate its existence to us across the far reaches of space, itself remaining hid, appeals to all that is highest and most far-reaching in man himself. More satisfactory than strange this; for in no other way could the habitation of the planet have been revealed. It simply shows again the supremacy of mind.... Thus, not only do the observations we have scanned lead us to the conclusion that Mars at this moment is inhabited, but they land us at the further one that these denizens are of an order whose acquaintance was worth the making" .
For the moment, let us leave Prof. Lowell's argument as he puts it. Whether we accept it or not, it remains that it is a marvellous achievement of the optician's skill and the observer's devotion that from a planet so small and so distant as Mars any evidence should be forthcoming at all that could bear upon the question of the existence of intelligent organisms upon its surface. But it is of the utmost significance to note that the whole question turns upon the presence of water--of water in the liquid state, of water in a sufficient quantity; and the final decision, for Mr. Lowell's contention, or against it, must turn on that one point. The search for Life on Mars is essentially a search for Water; a search for water, not only in the present state of Mars, but in its past as well. For, without water in sufficient quantities in the past, life on Mars could not have passed through the evolutionary development necessary to its attaining its highest expression,--that where the material living organism has become the tabernacle and instrument of the conscious intelligent spirit.
THE CONDITION OF MARS
But artificial structures imply artificers. And if the structures are so designed as to meet the needs of a living organism, it implies that the living organism that designed them must have a reasonable mind lodged in a natural body. If, then, the "lines" and "circles" that Prof. Lowell and his disciples assert to be artificial canals and oases are really such, they premise the order of being that we call Man. But these canals and oases also premise the liquid that we call Water--water that flows and water utilized in cultivation. In this chapter we will leave out of count the first premiss--Man--and only deal with what concerns the second premiss--Water; with water that flows and is utilized in vegetation.
PLANETARY STATISTICS
For in regard to this particular premiss we can do away with hypothesis, and deal only with certain physical facts that are not controversial and are not in dispute.
The first of this series of facts concerning Mars about which there can be no controversy or dispute relates to its size and mass. As the foregoing Table shows, it comes between the Moon and the Earth in these respects.
The figures show at a glance that Mars ranks in its dimensions between the Moon and the Earth, and that, on the whole, it is more like to the Moon than it is to the Earth.
Add to tbrJar First Page Next Page Prev Page