Read Ebook: Cooley's Cyclopædia of Practical Receipts and Collateral Information in the Arts Manufactures Professions and Trades... Sixth Edition Volume II by Cooley Arnold James Tuson Richard Vine
Font size:
Background color:
Text color:
Add to tbrJar First Page Next Page Prev Page
Ebook has 2662 lines and 778517 words, and 54 pages
Ferric oxide, 3 oz.; hydrochloric acid, 1/2 pint; digest in a sand bath until dissolved, then add of ammonium 2-1/2 lbs., dissolved in water, 3 pints; filter the liquid, evaporate to dryness, and reduce the mass to coarse powder. Orange-coloured crystalline grains readily soluble in water.
From metallic iron. From iron wire or clean iron filings cut into pieces, moistened with water, and exposed to the air until completely converted into rust; it is then ground with water, elutriated, and dried, in a similar way to that adopted for chalk. For sale, it is usually made up into small conical loaves or lumps.
Ferrous sulphate, 100 parts; common salt, 42 parts; calcine, wash well with water, dry, and levigate the residuum. This process yields a cheap and beautiful product, which is frequently sold for the ferri sesquioxydum; but it is less soluble, and therefore unfitted for a substitute for that preparation.
Ferrous sulphate, 4 lbs.; sodium carbonate, 4 lbs. 2 oz.; dissolve each separately in water, 3 galls.; mix the solution whilst hot, set the mixture aside, that the precipitate may subside, and subsequently wash and dry it as before. Contains water, and a trace of alkali.
The hydrate is of a yellowish-brown colour, and though it can be dried without decomposition, it requires to be kept in a moist state. It is best preserved in a well-stoppered bottle, filled with recently distilled or boiled water.
The hydrate is entirely and very easily soluble in hydrochloric acid, without effervescence; if previously dried at 180? Fahr., a stronger heat drives off about 18% of water.
We are indebted to Bunsen and Berthold for the introduction of this substance as an antidote to arsenic. A table-spoonful of the moist oxide may be given every 5 or 10 minutes, or as often as the patient can swallow it. When this preparation cannot be obtained, rust of iron or even the dry so-called carbonate may be given along with water instead. According to Dr Maclagan, 12 parts, and to Devergie, 32 parts, of the hydrate are required to neutralise 1 part of arsenious acid. Fehling says that the value of this substance as an antidote to arsenic is materially impaired by age, even when kept in the moist state. The presence of potassium, sodium, ammonium, hydrates, sulphates, chlorides or carbonates, is not of consequence, and, therefore, in cases of emergency, time need not be lost in washing the precipitate, which, in such cases, need only be drained and squeezed in a calico filter. The magma obtained by precipitating ferrous sulphate with magnesia, in excess, and which contains free magnesia and magnesium sulphate, besides ferric hydrate, precipitates arsenious acid not only more quickly, but in larger quantity, than ferric hydrate does when alone. It will even render inert Fowler's solution, and precipitate both the copper and arsenic from solutions of Schweinfurt green in vinegar, which the pure gelatinous oxide alone will not do.
Put the drained precipitate into a porcelain vessel, and mix with it 9 oz. of sugar in powder, and evaporate to dryness with constant stirring over a water bath, then mix in enough sugar in powder to make up 10 oz. by weight; reduce to powder and keep in a closed vessel. One hundred parts contain three of metallic iron.
Tartaric acid, 6-1/2 oz.; water, 7 pints; dissolve, neutralise the selection with sesquicarbonate of ammonium, and add 6-1/4 oz. more tartaric acid; to the solution heated in a water bath, further add moist hydrated oxide of iron ; when dissolved, filter, and evaporate, &c., as before.
Ferrous sulphate, 6 oz.; sulphuric acid, 160 minims; nitric acid, 4 fl. dr.; stronger solution of ammonia, 4-1/2 fl. oz.; boiling water, 3 pints; dissolve half of the sulphate in half of the water, add the oil of vitriol, boil, add the nitric acid gradually, boiling after each addition for a few minutes; dissolve the remaining half of the sulphate in the rest of the boiling water; mix the two solutions, add the ammonia, stirring well ; collect the precipitate on a calico filter, wash it with water until it ceases to precipitate a solution of nitrate of barium, and dry at a heat not exceeding 183? Fahr. The formulae of Gregory and Dr Jephson are similar.
Ferrous sulphate, 8 oz., dissolved in a mixture of water, 10 fl. oz., and sulphuric acid, 6 fl. dr., is converted by means of nitric acid, 4 fl. dr., diluted with water, 2 fl. oz., into ferric sulphates; this solution is then added to another, formed by dissolving ferrous sulphate, 4 oz., in water, 1/2 pint; the whole is then mixed with liquor of potassium hydrate, 2-3/4 pints, and after being boiled for 5 minutes is collected on a calico filter, and washed, &c., as before; and is to be preserved in a well-stoppered bottle.
From the black scales of iron that fall around the smith's anvil, by washing, drying, detaching them from impurities by means of a magnet, and then treating them by grinding and elutriation, as directed for prepared chalk. The product of this process is inferior as a medicine to the hydrate obtained as below, being less easily soluble in the juices of the stomach.
Iodine, 1 oz., and clean iron filings or turnings, 1/2 oz., are put into a Florence flask with distilled water, 4 fl. oz., and having applied a gentle heat for 10 minutes, the liquid is boiled until it loses its red colour; it is then at once filtered into a second flask, the filter washed with water, 1 fl. oz., and the mixed liquid is boiled down, until it solidifies on cooling.
With sugar: SACCHARINE IODIDE OF IRON, SACCHARUM FERRI IODIDI, FERRI IODIDUM SACCHARATUM, L. Iron , 1 dr.; water, 5 dr.; iodine, 4 dr.; obtain a solution of iodide of iron, as above, and add to it of sugar of milk , 1-1/4 oz.; evaporate at a temperature not exceeding 122? Fahr., until the mass has a tenacious consistence, then further add of sugar of milk, 1 oz., reduce the mixture to powder, and preserve it in a well-stoppered bottle. Every 6 gr. contains 1 gr. of iodide of iron.
From "syrup of iodide of iron" exposed in a shallow vessel, in a warm place, until it crystallises; the crystals are collected, dried, and powdered. A simpler plan is to gently evaporate the whole to dryness, and to powder the residuum. The saccharine iodide may be kept for some time in a corked bottle without undergoing decomposition.
Into sour whey, 2 lbs., sprinkle sugar of milk and iron filings, of each, in fine powder, 1 oz.; digest at about 100? Fahr., until the sugar of milk is dissolved, then add a second portion, and as soon as a white crystalline powder begins to form, boil the whole gently, and filter into a clean vessel; lastly, collect, wash, and dry the crystals as before.
Dissolve the transparent green crystals of the impure sulphate of iron in their own weight of water, acidulated with sulphuric acid, and re-crystallise.
The formula of the Ph. U. S. is similar.
Granulated; FERRI SULPHAS GRANULATA, L. A solution of iron wire, 4 oz., in sulphuric acid, 4 fl. oz., diluted with water, 1-1/2 pint, after being boiled for a few minutes, is filtered into a vessel containing rectified spirit, 8 fl. oz., and the whole stirred until cold, when the granular crystals are collected on a filter, washed with rectified spirit, 2 fl. oz., and dried, first by pressure between bibulous paper, and next beneath a bell-glass over sulphuric acid, after which they are put into a stoppered bottle, to preserve them from the air.
Crude sulphate of iron is frequently contaminated with the sulphates of copper, zinc, manganese, aluminium, magnesium, and calcium, which, with the exception of the first, are removed with difficulty. It also contains variable proportions of the neutral and basic ferric sulphates. The preparation obtained by direct solution of iron in dilute sulphuric acid should, therefore, be alone used in medicine.
From sublimed sulphur, 4 parts; iron filings, 7 parts; mixed together and heated in a common fire till the mixture begins to glow, and then removing the crucible from the heat, and covering it up, until the reaction is at an end, and the whole has become cold.
The resulting preparation, which should be of a deep dark red colour, contains about 5 per cent. of the oxide of iron. If the solution after completion of the operation should contain more than 5 per cent. of iron, it may be diluted with dialysed water till it reaches that point.
The above formula is said to furnish an article precisely similar to the original Bravais' dialysed iron.
Mr Shuttleworth says that an efficient dialyser may be made out of one of the flat hoops of an ordinary flour barrel, a bell jar, or even an inverted glass funnel. He gives the preference to the former, and limits its diameter to ten or twelve inches; if it exceeds this, the septum is liable to bulge in the centre, and to make the layer of liquid too deep at that point.
Well-washed bladder, deprived of its outer coat, also makes a good septum.
The septum should be tied around the hoop with twine, but not too tightly, and should be so arranged that its edges shall be left standing up around the hoop, so as to absorb any liquid escaping from the hoop at its junction with the septum. The dialyser being ready for use, the liquid intended for dialysis is poured into it to a depth of not more than half an inch, and the dialyser with its contents is then floated on the surface of some distilled water, contained in a suitable receptacle.
The hoop must only be allowed to sink just below the level of the water; if it gets below this point, it will be necessary to keep it up by some support or the other.
It is necessary to change the water in the outer vessel daily. For the first two or three days distilled water should always be used. When this is not obtainable rain water should be employed. When the water shows the absence of chlorides, and the preparation ceases to have a ferruginous taste, the operation may be regarded as finished. The process generally occupies one or two weeks.
"A pig's bladder, completely filled with the iron solution, securely tied, and immersed in water frequently changed, answers well for making this preparation. The process requires a longer time than with a carefully regulated and properly conducted dialysis, but it entails considerably less trouble. I consider it an advantage to procure the bladder perfectly fresh, as it is then easily cleaned by pure water, and alkaline ley need not be used. Great care is necessary in tying the neck carefully. This can be best accomplished by a few turns of iron wire. Above this may be secured a piece of twine, to suspend the bladder, by means of a stick, or rod, placed on the edge of the vessel containing the water. The bladder should be perfectly full, and immersed altogether in water. The attraction of the solution for the water is so great, that considerable pressure is manifested, and should any parts or holes be in the bladder, the liquid will be forced out, water will take its place, and failure result."
Pretty general consent appears to have fixed the strength of the solution of dialysed iron at five per cent. Where it exceeds this, the solution must be diluted with distilled water; and where it falls short of the amount, it will have to be reduced to the required volume by standing it in a warm and dry situation. The employment of much heat must be particularly avoided as it very frequently leads to the destruction of the compound; hence every care should be taken to render the evaporation of the fluid unnecessary.
The comparative freedom from taste and easy assimilation of the oxychloride of iron render it a valuable therapeutic agent. The dose of the five per cent. solution is 15 to 50 drops daily, in divided doses. Syrup forms a pleasant vehicle for its administration.
Dialysed iron has been successfully employed in a case of arsenical poisoning. The 'American Journal of Pharmacy' for January, 1878, contains an interesting paper by Dr Mattison detailing a series of experiments, which conclusively prove its value as an antidote to arsenic. Dr Mattison recommends the administration of the iron to be immediately followed by a teaspoonful or more of common salt.
The common itch consists of an eruption of minute vesicles, principally between the fingers, bend of the wrist, &c., accompanied by intense itching of the parts, which is only aggravated by scratching. The usual treatment is repeated applications of sulphur ointment , well rubbed in once or twice a day, until a cure is effected; accompanying its use by the internal exhibition of a spoonful or more of flowers of sulphur, mixed with treacle or milk night and morning. Where the use of sulphur ointment is objectionable, a sulphur bath, or a lotion or bath of sulphurated potash, or of chloride of lime, may be employed instead.
In the 'Canadian Pharmaceutical Journal' for 1872 is a paper by Professor Rothmund recommending the employment of balsam of Peru in this objectionable disease. The writer states that one application generally effects a cure, and that its use does away with the necessity of baths. He recommends the balsam being rubbed all over the naked body. Carbolic acid is another and much cheaper remedy proposed by the same author. To obviate its caustic action he advises the acid to be mixed with glycerin or linseed oil, in the proportion of one scruple of the acid to two ounces of either excipient. He considers the objection to this remedy may be that it enters too rapidly into the circulation. Another agent employed by Professor Rothmund is a lotion composed of one part of carbolate of sodium dissolved in 12 parts of water. The affected parts of the skin are to be rubbed with this three times a day.
It is further recommended to continue this treatment 8 or 10 days after the cure, in order to kill any acari or their eggs that may have lurked among the clothes or bed-linen. See BATH, LOTION , OINTMENT, PSORIASIS, &c.
Ivory is etched or engraved by covering it with an etching ground or wax, and employing oil of vitriol as the etching fluid.
Ivory is rendered flexible by immersion in a solution of pure phosphoric acid , until it loses, or partially loses, its opacity, when it is washed in clean cold soft water, and dried. In this state it is as flexible as leather, but gradually hardens by exposure to dry air. Immersion in hot water, however, restores its softness and pliancy. According to Dr Ure, the necks of some descriptions of INFANTS' FEEDING BOTTLES are thus made.
Ivory is whitened or bleached by rubbing it with finely powdered pumice-stone and water, and exposing it to the sun whilst still moist, under a glass shade, to prevent desiccation and the occurrence of fissures; observing to repeat the process until a proper effect is produced. Ivory may also be bleached by immersion for a short time in water holding a little sulphurous acid, chloride of lime, or chlorine, in solution; or by exposure in the moist state to the fumes of burning sulphur, largely diluted with air. Cloez recommends the ivory or bones to be immersed in turpentine and exposed for three or four days to sunlight. The object to be bleached should be kept an eighth or a fourth of an inch above the bottom of the bath by means of zinc supports. For the preparation of ivory intended for miniature painting Mr Ernest Spon in his useful work, 'Workshop Receipts,' says: "The bleaching of ivory may be more expeditiously performed by placing the ivory before a good fire, which will dispel the wavy lines if they are not very strongly marked, that frequently destroy the uniformity of surface."
Ivory may be gilded by immersing it in a fresh solution of proto-sulphate of iron, and afterwards in solution of chloride of gold.
Ivory is wrought, turned, and fashioned in a similar manner and with similar tools to those used for bone and soft brass.
The quantity of saliva is stated to have sometimes equalled a litre in measure. These experiments have been repeated in this country with analogous effects; in one case reported with jaborandi obtained from the Beaujon Hospital, and in another from London; results the similarity of which strongly point to a corresponding composition in the two specimens of the plant used, if, as seems not improbable, they may have belonged to different species. A case of impaired vision following the administration of jaborandi is also recorded; but this seems evidently to have been the effect of an overdose of the drug.
Drs Coutinho and Gubler affirm they have employed jaborandi in dropsy, bronchitis, diabetes, and various other diseases, and that they have found it fully answer their expectations; and in one case of albuminuria it is narrated that a permanent diminution of albumen from 14?40 to 12 grammes followed its use.
The abridged description of a sample of jaborandi from Pernambuco is from Mr Holmes' paper in the 'Pharmaceutical Journal.' The cut is from the last edition of Royle's 'Materia Medica.' "The specimens of the plant examined appear to belong to a shrub about 5 feet high. The root is cylindrical, hardly tapering at all, nearly 3/4 inch in diameter for the first 12 inches, and very sparingly branched. Bark of root of a pale yellowish brown, about a line in thickness, and has a short fracture. The root has an odour like a mixture of bruised pea-pods and orange-peel. Its taste is first like that of green peas; this soon disappears, and gives rise to a tingling sensation. The stem is 1/2 inch in diameter near the root, narrowing to 1/4 inch in the upper branches. The bark is thin, greyish-brown, longitudinally striated, and in some specimens sprinkled over with a number of white dots. The wood of the stem is yellowish-white and remarkably fibrous. The leaves are imparipinnate, about 9 inches long, with from 3 to 5 pairs of opposite leaflets, which are articulated to the rachis, and have very short, slightly swollen petiolates. The rachis of the leaf is swollen at the base.
The pairs of leaflets are usually about 1-1/4 inch apart, the lowest pair being about 4 inches from the base of the rachis. The leaflets are very variable in size, even on the same leaf. Their general outline is oblong-lanceolate. They are entire, with an emarginate or even retuse apex and an unequal base, and texture coriaceous. The veins are prominent on both sides of the leaf, and branch from the midrib at an obtuse angle in a pinnate manner. When held up to the light the leaflets are seen to be densely pellucidly punctate. These pellucid dots, which are receptacles of secretion, are not arranged, as in another kind of jaborandi, in lines along the veinlets, but are irregularly scattered all over the leaf, and appear equally numerous in every part. The whole plant is glabrous."
Let the resin be emulsified with the yolks of the egg, add successively the sugar, tincture, and flour, and mix thoroughly into a paste, with which thoroughly incorporate the whites of eggs, previously beaten up. Let the mass be divided into 144 biscuits, and bake.
Tonics and stimulants are also sometimes superadded to the above treatment.
Jellies are coloured by the addition of the usual stains used by confectioners, and are rendered transparent by clarification with white of egg.
The frauds practised in reference to the 'fineness' of the metal used in jewelry is noticed under GOLD . See also ASSAYING, DIAMOND, GEMS, GILDING LIQUOR, GILDING WAX, &c.
The plates on page 930 exhibit the different microscopic appearances of the three substances.
Kamala has long been employed in India as a remedy for tapeworm, and within the last few years has been given for the same purpose in this country with very general success. It may be administered in doses of from thirty grains to three drachms, suspended in water, rubbed up with mucilage, or mixed with syrup. In large doses, such as three drachms, it sometimes purges violently. After the third or fourth motion the worm is generally evacuated dead. A second dose may be taken in about four hours should the first fail to act; or instead of a second dose, some castor oil may be given. Kamala is also used externally by the natives of India in various skin complaints, particularly in scabies. It is also said to have proved useful in herpetic ringworm.
Kamala forms a very considerable article of export from India, it being a valuable dye.
Add to tbrJar First Page Next Page Prev Page