bell notificationshomepageloginedit profileclubsdmBox

Read Ebook: Insomnia; and Other Disorders of Sleep by Lyman Henry M Henry Munson

More about this book

Font size:

Background color:

Text color:

Add to tbrJar First Page Next Page

Ebook has 218 lines and 73509 words, and 5 pages

Definition of sleep--The invasion of sleep--The hypnagogic state--Depth and duration of sleep--Diagrammatic illustration of the phases of sleep--Modifications of physiological functions produced by sleep--Effect of sleep upon the processes of respiration, circulation, calorification, secretion, and nutrition--Consequences of the progressive invasion of the nervous system by sleep-- Effect upon the organs of special sense--Effects observed in the muscular apparatus of the body--Condition of intellectual functions during the invasion of sleep--Does the mind ever sleep?--Arguments adduced by Sir William Hamilton and others to prove the continued activity of the mind during the sleep of the brain--Reasons for supposing that the mind may sleep--Variability of the depth of sleep--Experiments of Kohlsh?ter to estimate the degree of variation--Alternation of day and night considered as a cause of sleep--Diminution of sensation a cause of sleep-- Illustrative observation by Str?mpell--Fatigue a cause of sleep--Hypothesis of Obersteiner regarding the cause of sleep--Hypothesis of Pfl?ger--Production of artificial sleep by impregnation of the brain with narcotic substances--Analogous production of natural sleep by accumulation of cerebral waste-products--Observations regarding the duration of sensory impressions requisite for the excitement of conscious perception--Difference between syncope and sleep--Observations of Mosso regarding the state of the cerebral circulation during sleep--Cause of the change in the cerebral circulation during sleep-- Molecular conditions necessary for the production of sleep--Somnolence--Sleeping Dropsy, or Maladie du Sommeil-- Coma--Lethargy--Apparent death--Lucid lethargy. 1

Causes of insomnia--Affections of the organs of special sense--Effects of light--Effect of sound--Impressions upon the organs of smell and taste--Disturbances caused by a high temperature--Atmospheric and electrical disturbances-- Effects produced by cold--Hibernation of animals-- Disturbances of sleep occasioned by painful sensations-- Disorders of the sympathetic nerves--Morbid states of the central nervous organs--Disorders of circulation and nutrition--Hyperaemia of the brain--Anaemia and starvation of the brain--Effects of tea and coffee--Effect of alcohol-- Inflammations, degenerations, and tumors affecting the brain--Excitement of the brain by diseased conditions of the blood. 38

Serious consequences of insomnia--Its relation to cerebral diseases--Treatment of insomnia by moderation and control of the cerebral circulation--Remedial agents--Nervous stimulants and nervous sedatives--Heat--Baths--Massage-- Electricity--Counter-irritants--Food--Digitalis--Camphor-- Musk--Valerian--Cannabis indica--Belladonna--Hyoscyamus-- Stramonium--Phosphorus--Acids--Opium--Cold--Alcohol-- Paraldehyde--Ether--Chloroform--Chloral--Butylchloral hydrate--Amyl nitrite--Opium and opiates--Bromides--Hops-- Gelsemium--Conium. 56

Insomnia in acute affections of the brain--In insanity--In chronic alcoholism and delirium tremens--In diseases of the heart and blood-vessels--In angina pectoris--In diseases of the respiratory organs--In asthma--In renal diseases--In diseases of the liver--In gastro-intestinal diseases--In febrile conditions--In rheumatism and gout--In lithaemia--In syphilis--In disorders of nutrition--During pregnancy and after parturition--In spasmodic diseases--In childhood--In old age. 92

Physiology of perception and of dreaming--Definition of the act of dreaming--Revery--Production of illusions and hallucinations by drugs and by disease--Effects of hasheesh--Effects of acute disease--Association of ideas--Memory of past sensations--Dreams produced by excitement of the different organs of sense--Persistence of dream-impressions after waking--Experience of M. Baillarger--Of Professor Jessen--Belief of savages in the reality of dreams--Sensory dreams--Intellectual dreams-- Repetition of dreams--Incoherence of dreams--Cause of the superior vividness of certain dreams--Duration of dreams-- Dreams excited by morbid states of the body--Prophetic dreams--Their causes--Clairvoyant dreams--Hallucinatory dreams--Sir Edmund Hornby's experience--Hallucinations-- Case related by Dr. E. H. Clarke--Revelation through dreams--Revival of memory in dreams. 116

Causes of somnambulism--Physiology of somnambulism-- Varieties of the disorder--Maury's classification-- Classification of Ball and Chambard--Diagrammatic representation of their classification--Somnambulic lethargy--Illustrative cases--Somnambulic dreams--Night terrors--Somnolentia or sleep-drunkenness--Sleep-walking-- Illustrative cases--Condition of the special senses in somnambulism--Relation of memory to the somnambulic paroxysm--Illustrative cases--Occasional recollection of incidents connected with the somnambulic dream-- Resemblances between the somnambulic state and the condition of post-epileptic mania--Somnambulic visions--J. P. Frank's case--Mesnet's case--Somnambulic life--Its likeness with the double-consciousness of certain forms of epilepsy--Illustrative cases--General theory of somnambulism. 166

Antiquity of the phenomena of hypnotism--Modern observations--Physical conditions favorable to the phenomena--Methods of inducing the hypnotic state--Duration of hypnotic sleep--Rudimentary states of hypnotism-- Investigations of the Society for Psychical Research-- Mind-reading--Physiological explanation of the process-- Charcot's observations on artificial somnambulism-- Cataleptic variety of the hypnotic state--Lethargic variety--Somnambulic variety--Hypnotic clairvoyance-- Exalted sensibility of the brain in hypnotic states-- Susceptibility to suggestions from without--Phenomena of so-called spiritualism--Table-rapping--Planchette-- Therapeutical employment of hypnotism--Metaphysical healing. 212

THE NATURE AND CAUSE OF SLEEP.

Worn out, friend, is every theory, But green the golden tree of life. --GOETHE.

Natural sleep is that condition of physiological repose in which the molecular movements of the brain are no longer fully and clearly projected upon the field of consciousness. This condition is universally observed in all healthy animals; and its recurrence is intimately associated with the diurnal revolution of the earth, and the succession of day and night. The disappearance of daylight is, for the majority of living creatures, the signal for cessation of active life. Though its onset may be for a time delayed by an effort of the will, the need of rest at length overcomes all opposition, and the most untoward circumstances cannot then prevent the access of unconsciousness. The story of the sailor-boy, sleeping on "the high and giddy mast," is familiar to every one. An officer in the United States Navy has assured me of more than one instance in which men had fallen asleep under his own eyes, oppressed by exhaustion, during the roar of a long continued bombardment. Thus produced, the relation of cause and effect between weariness and sleep becomes very apparent. The refreshing influence of such repose points clearly to the restorative character of the physiological processes which persist during the suspension of consciousness. It also renders evident the final cause of that periodical interruption of activity which the brain experiences in common with every other living structure.

Sleep is usually preceded for some time by a feeling of sleepiness. This sensation, like the analogous sensations of hunger and thirst, represents in some measure the progressive diminution of energy throughout the entire body; but it is chiefly expressive of the failure of cerebral energy. It produces a sense of general heaviness and intellectual dullness; the special senses become less alert, the eyelids droop, numerous groups of muscles experience the spasmodic contraction of yawning, the head drops forward and is recovered with a jerk, the limbs relax, and the whole body tends to assume a position convenient for repose. Every school-boy who has been compelled to pass an evening hour at a dull lecture, under the eye of a martinet monitor, will testify to the suffering which attends any unusual prolongation of this period. But, if the natural course of events be not obstructed, the stage of mere sleepiness is soon passed, and the introductory stage of sleep is entered. This is a state in which the individual is neither awake nor fully asleep. It is known as the hypnagogic state. During this period the phenomena of simple sleepiness become exaggerated to such a degree that the attitude of repose is assumed without effort if the body be permitted to follow the natural inclination of its different members. The eyes close, the other senses become inactive, though the sense of hearing is the most persistent. Released in considerable measure from the control of the brain, the reflex energy of the spinal cord is at first somewhat exalted. Witness the fibrillary twitching of the muscles, and the convulsive state, which may often be observed during the stage of somnolence after severe fatigue. The uneasy sleeper may even be roused to complete wakefulness by such involuntary movements. But, as sleep becomes more profound, the reflex functions of the cord are also weakened. As the sensory organs retire from action, the intellectual faculties lose their equilibrium. First, the power of volition ceases. Then the logical association of ideas comes to an end. The reasoning faculty disappears, and judgment is suspended. We become, therefore, no longer capable of surprise or astonishment at the vagaries of memory and of imagination, the only faculties that remain in action. To their more or less unfettered activity we owe the presentation in consciousness of those disorderly pictures which, occurring in this stage of imperfect sleep, have been termed hypnagogic hallucinations. During the early moments of this period an observant person may often retain a power of reasoning sufficient to remark the fact of dreaming, and this effort of attention may produce a partial awakening; but, usually, the subsidence of cerebral function is progressive and rapid. The fire of imagination fades, the field of consciousness becomes less and less vividly illuminated, the entire nervous apparatus yields to the advancing tide, and, finally, the dominion of sleep is fully confirmed. The sleeper knows nothing of the external world, and has lost all consciousness of his own existence. But the duration of profound repose is brief. From the end of the first hour the depth of sleep, at first, rapidly, then, more gradually, subsides. Dreams disturb its tranquility, mental activity increases, the power of volition revives, and, at the end of six or eight hours, the individual is once more awake. The subjoined diagram, borrowed from the Dictionaire Encyclop?dique des Sciences M?dicales, will facilitate the apprehension of these successive phases in the course of sleep:

It was formerly believed that during the time of sleep all the processes of assimilation and nutrition throughout the body are increased,--in short, that it is the season of repair for the waste of tissue incurred during the hours of wakeful activity. While it is true that in sleep the expenditure of force is greatly reduced, the more exact researches of modern physiologists indicate a universal reduction in the rate of all the vital processes. The final result, however, is a general renewal of energy, because the aggregate income of the tissues is greater than their outgo during the suspension of conscious activity. The following observations make very apparent the fact of a reduction of physiological activity:

The experiments of Pettenkofer and Voit, to which allusion has just been made, serve also to illustrate the fact that all tissue changes are increased by every excitement of the sensory organs of the body, but are diminished by the subsidence of peripheral irritations. Hence the importance of quiet and darkness when we seek to induce that state of the body in which molecular processes should reach their minimum. Since every act of perception is attended by an outburst of refuse matter from the nervous tissue, the quantity of such excrementitious discharge in any given period of time becomes in some sort a measure of the vital activity of the organism. Conclusive proof of the diminution of vital function during sleep is thus obtained.

It must not, however, be inferred that the general reduction of tissue-change, which has thus been established, during the hours of sleep, is evidence of a universal and uniform reduction of function throughout the body. Sleep seldom falls at once with equal force upon every organ; its invasion is progressive. Consequently, certain structures may be fast asleep, while others are partly awake,--while still other portions of the organism may be in a condition of activity greatly in excess of their ordinary wakeful function. Upon this fact depend the phenomena of dreams and the various forms of somnambulism. The special senses are usually overcome by sleep before the muscular apparatus yields, and the cerebro-spinal nervous centres are the last of all to succumb. The eyes, for example, cease to see clearly before the eyelids droop, or the muscles of the neck give way in the act of nodding. The senses of touch and of taste fail next in order, as in the case of the infant gourmand, who may be seen falling asleep at supper,--his mouth yet filled with untasted sweets from the table before him. The sense of smell is more persistent, and its exercise is sometimes an obstacle to the invasion of sleep. Witness the effect of powerful odors upon certain persons. The perfume of flowering plants in the sleeping chamber is sometimes decidedly annoying on this account. A lady of my acquaintance was once awakened out of a sound sleep by the smell of tobacco smoke from the pipe of a thoughtless burglar who had quietly entered a distant apartment of the house. A sudden change of wind, deluging a city with the vapors of a glue-factory or rendering establishment, may in like manner disturb the slumbers of thousands of people.

The sense of hearing seems to be the most persistent of all the special senses. It is not a very uncommon thing for persons to be awakened by the sound of their own snoring; or, if not actually aroused by the noise, to remain in a condition of repose which seems to be sustained and cheered by the regular rhythm of its own music. As a general rule, however, it is noteworthy that, when not wholly dormant, each sense finds its sphere of activity greatly narrowed by the fact of sleep. Consequently the range of perception, if not wholly obliterated, is greatly limited during the time of sleep.

While it is true that sleep arrests the voluntary activities of the muscles, it is also a fact that all the muscles do not yield at once or in equal degree. The extensors of the neck, and the supporters of the spinal column, are the first to fail. The patient begins to nod, and is inclined to fall forward, before consciousness ceases. The muscles of respiration and of circulation continue to contract, though at a diminished rate. The vermicular movements of the intestinal coats persist, and in certain conditions of ill-health their exaggerated contractions may become a cause of imperfect repose. Reflex movements may always be excited during natural sleep. Tickling the sole of the foot will cause retraction of the limb; and before the complete establishment of sleep, a certain exaltation of the spinal reflexes may be observed. Young children may frequently be seen in the act of suction with their lips, as if at the breast; and the smile of the sleeping infant is a matter of daily remark in every nursery. The influence of dreams as an excitant of muscular movement will be hereafter discussed.

The variation of intellectual function which appears in sleep serves to measure its profundity and to indicate the extent of its invasion. The act of perception being dependent upon sensation, it is to be observed that the range of perception diminishes so soon as the organs of sense begin to yield. Its intensity may not immediately fail, but the breadth of its scope is narrowed. Sometimes, however, the act of conscious perception is arrested before the organs of sense are sealed. The sleepy reader may continue to eye the page before him, perhaps even to read aloud for a considerable time after he has ceased to derive any meaning from the words of the book. In such cases the organs of perception and conception and association of ideas slumber before the bonds of connection between the will and the muscular organs have been completely relaxed. Such an example affords a valuable illustration of the division of the brain into separate mechanisms which, though most intimately related, are nevertheless partially independent of each other. Sleep may operate like an invasive disease, falling with unequal incidence upon the different structures that make up the mass of the brain, paralyzing one portion, while simply benumbing another, and even arousing to excessive activity a third. Consequently the intellectual functions may be very unequally disturbed, and the order of their subsidence may be considerably varied; but, as a general rule, the physiological relations of the faculties are respected, so that as sensation diminishes, perception fails, the conception of ideas is correspondingly hindered, and the association of such ideas as are still projected upon the field of consciousness becomes more imperfect. The loss of the power of association implies the destruction of memory and the impossibility of exercising the reasoning faculty or of forming those judgments upon which every act of volition is based. When the brain has at length been so far overwhelmed that physical impressions can no longer reach the field of consciousness, all manifestation of intellectual life is at an end, and the sleeper sleeps a dreamless sleep that leaves no trace behind.

It is assumed in the last sentence that the brain may become so far transformed by sleep that it ceases for the time to be capable of function as the instrument of thought. This conclusion has been questioned by the very highest authorities. Sir William Hamilton, Exner, and many others have instituted numerous experiments to test the possibility of a dreamless sleep. Causing themselves to be suddenly aroused at all hours of the night, they invariably found themselves at the instant of awaking occupied with the course of a dream. Hence it has been inferred that the mind is always alert, even when the body is most thoroughly asleep. In explanation of the fact that consciousness contains after deep sleep no trace of such mental activity, it is claimed that the act of dreaming of which we are aware at the moment of waking is proof of intellectual function during the moments which preceded that incident, and that we are merely forgetful of all similar processes that occurred during undisturbed sleep. The unconsciousness of sleep, according to this theory, is not real--it is only apparent through failure of the memory. If this be true, memory is the only intellectual faculty of whose inaction we can be sure. The period of deep sleep might then be, for all we know to the contrary, a period of the most intense and exalted mental activity. But, if so, it is quite worthless as a constituent of our conscious existence. It may also be objected with equal reason that the dreams which unquestionably occupy the field of consciousness at the instant of waking are probably excited by the impressions which terminate sleep. The process of waking, though often very greatly hurried, is by no means absolutely instantaneous. As we shall learn, the time requisite for the evolution of a dream may be indefinitely brief. Consequently, it seems better in all such instances to assign the period of dreaming to the time of diminishing slumber that corresponds to the disturbance by which sleep was terminated.

The only reason for any hesitation in the acceptance of such a proposition consists in the reluctance of many philosophers to admit the possibility of any interruption in the active life of a spiritual being, such as man is conceived to be. But it is difficult to comprehend any valid reason for the denial of such interruption. Every form of force, of which we have any knowledge, is subject to fluctuations in the course of its phenomenal manifestation. When a physical force ceases to exhibit itself in an active state, and passes into a potential modification, we are not compelled to regard it as extinguished. It is merely latent or inhibited, but always ready to take its place again among the kinetic forces of nature. In like manner there seems to be no good reason why that spiritual force or congeries of forces which constitutes the mind of man may not experience analogous transformations in successive periods of action and of repose. Such periods of rest occur in sleep, in coma, in disease and disorganization of the brain. The mind sleeps, it does not cease to exist--probably not even when death dissolves its material substratum.

That the depth of sleep is exceedingly variable is evident in the experience of every one. A German physiologist has made a rough estimate of the soundness of sleep by comparing the loudness of the noises necessary to wake the subject of experiment at regular intervals during the course of the night. He arranged a gong with a pendulum attachment, and noted the length of the stroke which produced a sound sufficiently loud to awaken the patient. In this way the different degrees of intensity of the awakening noise could be calculated, and the corresponding depth of sleep could be estimated. It was thus concluded that the depth of sleep increases rapidly during the first hour, at the end of which time it has reached its maximum. During the next half hour it diminishes as rapidly as it had increased in the first half hour. During the next hour it still further diminishes, almost as much as it increased during the second half hour. The remaining ten half hours of the experiment were occupied by a comparatively light and gradually diminishing slumber, until the vanishing point of sleep was reached at the expiration of eight hours from its commencement. This observation corresponds with the general opinion that sleep is deepest in the early part of the night. For the same reason dreams and wakefulness are most frequent during the early watches of the morning.

When considering the causes of sleep it is needful to exclude from view those artificial varieties of sleep that are produced by the various narcotic drugs, as well as the counterfeits of sleep which result from diseased conditions of the body. It is comparatively easy to frame hypotheses in explanation of such interruptions of our conscious life; but, when we attempt to formulate a theory which shall satisfactorily account for the occurrence of natural sleep in healthy animals, the task becomes exceedingly difficult.

First among the causes of sleep may be reckoned the alternation of day and night. With the disappearance of sunlight all nature sinks into a condition of repose.

"The night brings sleep To the greenwoods deep, To the bird of the woods its nest; To care soft hours, To life new powers, To the sick and the weary--rest!"

In this tendency to nightly inaction man shares with all other living creatures. His body thus testifies to the intimacy of its relations with all portions of the solar system. Originated in the tropical regions of the earth, where day and night are nearly equal, we find in all parts of the world the same hereditary need of a period of rest, nearly coincident with the duration of the shorter nights of the tropical year. Had the birth-place of primeval man been situated within the Arctic circle, it is probable that his hours of sleep might have differed considerably from the number now needed by the average individual. So powerful are the necessities thus dependent upon the harmony between our organization and the movements of the earth, that if the habit be formed of sleeping at other hours than those which are usually devoted to that purpose, the full complement of sleep is still needful to satisfy the demand for rest.

Fatigue of any sort is one of the most energetic causes of sleep. The impossibility of long sustained exertion is a fact almost too familiar to attract attention. Every muscle must be suffered to rest for a time after contraction before it can be again contracted. Even the heart and the muscles of respiration must be allowed to enjoy regular periods of repose many times each minute. These are examples of local rest, not involving the entire body. But if the whole body participate in any violent action, every part will manifest a consequent disposition to rest. Witness the effects of the venereal act. Every muscle is relaxed; the brain, which has officiated as the supreme source of energy, experiences exhaustion, and sleep frequently terminates the voluptuous paroxysm. In like manner, sensations of severe pain, if sufficiently prolonged, become a cause of sleep. Prisoners upon the rack have slept through sheer exhaustion while undergoing the horrors of torture. Little children frequently fall into a deep sleep immediately after painful, though comparatively bloodless, surgical operations performed without anaesthetics. The depressing emotions, even, may so fatigue the brain as to induce sound sleep through reaction from previous excitement. Every wearied portion of the body must rest; and when the brain thus rests, sleep is the consequence.

Impressed by the force of such considerations, certain physiologists have reasoned from the analogies suggested by a study of the results of muscular fatigue, and have suggested an hypothesis accounting for the occurrence of sleep by a supposed loading of the cerebral tissues with the acid products of their own disassimilation during wakeful activity. The acid reaction of the brain and of the nerves after exertion, corresponding with the development of acids in the muscular tissues during contraction, suggested the probability that an excessive presence of lactic acid and its sodic compounds might be the real cause of cerebral torpor and sleep. Could this hypothesis be proved, ordinary sleep would take its place along with the states of unconsciousness induced by anaesthetics and hypnotics, and the lactate of sodium should be found the very best of medicines for the relief of wakefulness. Its administration for this purpose, however, has yielded only the most discordant and unsatisfactory results. The fatigue theory, moreover, is insufficient, since it furnishes no explanation of the invincible stupefaction produced by cold, nor does it render intelligible the unbroken sleep of the unborn child.

That the capacity for thus signalling across the gulf which divides matter from mind is the result of a certain perfection and complexity of physical structure is rendered probable by the utter failure of the infra-cortical organs alone to impress the conscious intelligence by any amount of independent activity. The same thing is also indicated by the unconscious sleep of the rudimentary foetal brain, and by the brevity of the intervals of wakefulness which mark the life of the new born babe. That this capacity is dependent upon a special mobility of the atoms of the brain, is shown by the speedy cessation of intelligence which follows great reduction of temperature, as in hibernation, or during exposure to severe frost. That its exercise is largely dependent upon the activity of the senses is proved by interference with their function, as in the case above quoted from the observations of Str?mpell.

The dependence of the waking state upon the presence and activity of a sufficient quantity of a peculiarly unstable form of protoplasm in the brain is an hypothesis which presents no great difficulty of comprehension. But how may we explain the lapse from the intelligent vivacity of that waking state into the unconscious inactivity of sleep? I have elsewhere discussed the manner in which artificial sleep is produced by impregnation of the brain with anaesthetic substances that interfere with sensibility, and finally produce stupefaction, by hindering the normal processes of intra-molecular oxidation in the protoplasm of the nervous tissues. The same general line of argument may be extended to cover the action of every narcotic agent with which the living substance of the body may become surcharged. Accepting, then, the hypothesis advocated by Obersteiner and Preyer, it becomes an easy thing to account for the gradual onset of sleep by supposing an accumulation of the "fatigue producing" products of intra-molecular oxidation. But we cannot thus explain the rapid and, as it were, voluntary passage from wide awakefulness into a condition of deep sleep, such as may be commonly observed among sailors and others who have formed the habit of going at once to sleep at regularly recurring hours of the day or night. Certain writers have endeavored to account for this fact by imagining a special mechanism at the base of the brain by means of which the current of the blood through the brain may be voluntarily diminished, with a consequent arrest of conscious activity. But, still adhering to the hypothesis of Pfl?ger, we shall obtain a clearer explanation of the facts by considering the phenomena connected with the succession of impressions upon the organs of sense. It has been ascertained that such impressions must persist for a certain measurable length of time in order to excite conscious perception. A sound must be prolonged for at least fourteen-hundredths of a second, a ray of light must agitate the retina for about eighteen to twenty-hundredths of a second, an ordinary contact with the surface of the skin must continue from thirteen to eighteen-hundredths of a second, in order to awaken any knowledge of sound and light and tactile sensation. For the simplest act of perception from two to four-hundredths of a second are necessary. It is, therefore, perfectly reasonable to suppose that when the "explosive material" of the brain has been sufficiently "dampened" by the accumulation of acid refuse which accompanies prolonged cerebral effort, the impressions of sense may no longer suffice to excite in the cortical protoplasm vibrations of sufficient length, or following each other in sufficiently rapid succession, to sustain consciousness. The cortex of the brain may then be likened to a body of water into which bubbles of partially soluble gas are introduced from below. When the bubbles are large, and when they follow each other rapidly, a continual effervescence is maintained upon the surface of the water. But if the size of the bubbles be reduced, or if the solvent capacity of the liquid be increased, the surface will become almost, if not quite, perfectly tranquil. In some such way, without any great danger of error, may we picture forth the manner in which the generation of ideas in the field of consciousness is related to the molecular movements in the space occupied by the protoplasmic substance of the brain. Returning, now, to the rapid induction of sleep, we find that it is usually the experience of people who lead an active life in the open air, and are compelled to endure frequent interruption of their rest. The sailor who is trained to work four hours on deck, and then to sleep four hours below, has been virtually transformed by this habit into a denizen of a planet where the days and the nights are each but four hours long. His bodily functions become accommodated to this condition; his nervous organs store up in sleep a supply of oxygenated protoplasm sufficient only for an active period of four or five hours; so that, when the watch on deck is ended, he is in a state as well qualified for sleep as a laborer on shore at the close of a day of twelve or fifteen hours. Moreover, the majority of those who can thus easily fall asleep are individuals whose waking life is almost entirely sustained by external impressions. So soon, therefore, as such excitants are shut out by closing the eyes in a place of shelter from the sounds and turmoil of the air, comparatively little remains for the stimulation of ordinary consciousness, and sleep readily supervenes through mere lack of cerebral excitement, especially if the excitable matter of the brain has been previously overwhelmed by the products of active exertion.

That analogous, though not identical, predisposition to unconsciousness may also be rapidly induced by modifications of the cerebral circulation is proved by the sudden reduction of cerebral excitability and consciousness which occurs during the act of fainting. In this counterfeit presentment of sleep the important part played by variations of the blood current through the brain is so conspicuous that certain writers have attempted to show that genuine sleep is the result of a diminution in the flow of blood to the cortex of the brain. An ingenious physician has even attempted to relieve insomnia very much as a surgeon might undertake to cure a popliteal aneurism--by placing tourniquets on the arteries leading to the affected part. But the mere fact that syncope produces unconsciousness does not prove that "cerebral anaemia" should be elevated to the rank of the principal cause of natural sleep. The nervous process is the primary factor. The circulation of the blood is everywhere under the immediate control of the nervous system. Consequently, every change in the condition of the nervous structures is followed by a corresponding change in the state of the circulating apparatus. Wherever an organ is aroused to activity, so delicate are the adjustments by which it is connected with the brain and with the heart that it is at once irrigated by an increased flow of blood. When its functional activity subsides, the same mechanism provides for a corresponding reduction in the supply of blood to its tissues. The brain itself forms no exception to this law. This has been admirably shown by the observations of Professor Mosso, of Turin. The learned professor enjoyed the rare opportunity of observing three individuals who had suffered the loss of a considerable portion of the bony walls of the cranium, exposing the surface of the cerebrum, and affording a view of the pulsation of the vessels of the brain. With the aid of the cardiograph, the sphygmograph, the hydrosphygmograph, and the plethosphygmograph, it became possible to register the circulation of the blood in the brain, and to compare that portion of its course with the coincident circulation in other parts of the body. It was thus shown that every increase of emotional or intellectual activity was attended by an increase in the activity of the cerebral circulation. This increase was procured at the expense of other portions of the body, which exhibited a coincident reduction in the amount of blood received from the heart. The occurrence of sleep caused a diminution in the number of respirations, and a fall of six or eight beats in the pulse. The volume of the brain and its temperature were at the same time slightly reduced, through the diversion of blood from the head to other regions of the body. The consequent dilatation of the vessels in the extremities was readily demonstrated by the use of the plethosphygmograph. The extreme sensitiveness of the nervous centers was further illustrated by the fact that if, during sleep, a ray of light were directed upon the eyelids, or if any organ of sense were moderately excited without waking the patient, his respiration was at once accelerated; the heart began to beat more rapidly, the vessels of the extremities contracted, and the blood flowed more freely into the brain. Similar results accompanied the act of dreaming. The return of full consciousness on waking was followed by an immediate increase in the activity of the intra-cranial circulation.

In all such observations it is worthy of note that the nervous impression is the primary event so long as artificial disturbances are not intruded. The changes of blood-pressure and circulation were invariably secondary to the excitement of nerve tissue. Sleep, therefore, must be regarded as the cause, rather than the consequence, of the so-called cerebral anaemia which obtains in the substance of the brain during repose. This condition of "anaemia" is nothing more than the relatively lower state of circulation which may be remarked in every organ of the body during periods of inactivity. Every impression upon the sensory structures of the brain occasions a corresponding liberation of motion in those structures. The movement thus initiated arouses the vaso-dilator nerves of the cerebral vessels and excites the vaso-constrictor nerves of all other portions of the vascular apparatus. Hence the superior vascularity of the brain so long as the organs of sense are fresh and receptive. Hence the diminishing and varying vascularity of the different departments of the brain as sleep becomes more or less profound. These modifications of the brain and of its circulation are well illustrated by the effects of a moderate degree of cold applied to the cutaneous nerves of the body, as not unfrequently happens when the night grows cool towards morning. The disturbance of the sensitive nerves of the skin is transmitted to the brain. The excitement of this organ causes dilatation of its vessels, and increased irritability of the cortical instrument of perception. This becomes the starting point for the projection of impulses upon the field of consciousness, producing dreams, or even a complete awakening from sleep.

The cause of sleep must, therefore, be sought in the molecular structure of the brain, rather than in fluctuations of the blood-current. In the present state of our knowledge it must be negatively represented as the consequence of a deficiency in the amount of movable oxygen in the nervous tissue. This deficiency may be the result of immaturity, as in the foetus, or in the new-born infant; or it may result from the accumulation of an excess of the waste-products of intra-molecular oxidation during functional activity--products which hinder the further passage of oxygen into stable combination with the oxidizable elements of protoplasm. Sleep thus produced differs from the artificial sleep induced by narcotic drugs, in the fact that its cause is self-generated by the instrument of thought, while narcotic stupor is caused by the intrusion of substances derived from without--substances which, like the natural refuse of the living cells, more or less completely hinder the processes of oxygenation and oxidation within the tissues of the body. Hence the states of healthy sleeping and waking must necessarily be self-limited and regularly successive; while the state of narcotism is purely accidental, and its duration exactly corresponds with the variable length of the period during which the body may remain impregnated with the hypnotic agent.

Certain authors make a distinction between lethargy and apparent death; but the difference is one of degree rather than of kind. The movements of respiration and of circulation, though greatly enfeebled, are readily observed in ordinary forms of lethargy; but in apparent death the pulse can no longer be discovered, and nothing more than the faintest sound can be distinguished in the region of the heart. It, therefore, becomes important to have within reach a crucial test of the persistence of general vitality. Such evidence, according to Rosenthal, is furnished by the faradaic current. Within two or three hours after actual death, the muscles cease to respond to the induced current; but in apparent death this form of electro-muscular contractility never disappears. Every other test that has been proposed has failed under certain circumstances. Observation of the changes in muscular temperature during electrical excitation is a method better adapted to the laboratory than for clinical practice.

The victims of this variety of apparent death are usually women, or men who are characterized by a feminine nervous organization. Great mental excitement, fatigue, semi-starvation, and exhausting diseases, are the principal exciting causes of the event. The following case, related by my friend, Dr. P. S. Hayes, of Chicago, illustrates the phenomena of lucid lethargy. The patient was a female physician, about thirty years of age, unmarried, and consumptively inclined. During the course of a long and wearisome hospital service, she was prostrated with typhoid fever. Placing herself under the immediate care of my informant, she was also attended by several of the most eminent physicians in the city. After a long and exhausting illness she appeared to be dying. In the presence of her physician, and surrounded by her relatives, she ceased to breathe. The pulse stopped, life seemed to have gone out. Bottles of hot water were applied to the limbs, and various restoratives were employed. After a considerable time she began again to breathe, and a gradual recovery followed. During the whole time of apparent death, consciousness had been preserved. She seemed to be looking down from a point above her bed; she could see the doctor feeling for her pulse, and was grieved by the sorrow of her friends. Ordinary sensation was temporarily suspended, and she could not distinguish the contact of the hot-water bottles that were applied to her limbs, though actually scalded by their excessive heat. Borne upon the wings of an excited imagination, she thought herself permitted to look into heaven, but was not suffered to enter its gates. In this exaltation of the imagination the reasoning faculties also shared, so that certain philosophical problems which had previously baffled her intellect were now perfectly comprehensible, and the memory of their solution persisted after recovery.

Many similar narratives have been duly authenticated, but the limits of the present chapter will not permit a discussion which properly belongs to an investigation of the phenomena of trance. The important fact for present consideration is the persistence of conscious life, despite the appearance of death. In this preservation of consciousness, notwithstanding the temporary suspension of certain kinds of sensibility and the power of voluntary motion, may be discovered a relationship between the phenomena of lucid lethargy and various disturbances of sleep, which will be considered in a succeeding chapter.

INSOMNIA, OR WAKEFULNESS.

Sleep, gentle sleep, Nature's soft nurse, how have I frighted thee That thou no more wilt weigh mine eyelids down And steep my senses in forgetfulness? --KING HENRY IV, SECOND PART.

Irritation of the sensory apparatus may be ranked in three classes:

In the tropical regions of the world it is usual for the inhabitants to sleep during the middle of the day; but they take great pains to exclude the light from their houses during the hours of sleep. The Pacific Islanders cover their faces with the bed clothes for the purpose of excluding the light while attempting to sleep. Repose thus obtained in the daytime often serves to convert the night into a season of wakefulness. The Africans sleep and dream away the heated hours of the day, and give up considerable portions of the night to festivity in the open air--a practice which undoubtedly contributes to the permanence of an inferior grade of social life.

Sudden illumination of the sleeping room will frequently awaken the sleeper. During the great fire in Chicago, A. D. 1871, many persons were thus aroused from their slumbers as the flames lighted up the streets adjoining their houses. One of my acquaintances was awakened one night by a flash of light from the lantern of a burglar who was moving noiselessly about her chamber. The experience of almost every one will testify to the effects of sheet-lightning silently illuminating the sky by night. Dreams, also, are not unfrequently excited by the incidence of light upon the closed eyelids.

The sense of hearing is one of the most persistent of the special senses during the incidence of sleep. It is perhaps the most excitable of these senses during the period of repose. Long after the subject has become immersed in sleep his auditory apparatus remains sensitive to sounds. Dreams are often produced by impressions upon the ear. Often in sleep it seems as if the sense of hearing remained wakeful and watchful for expected signals, as when an alarm clock serves to arouse the sleeper at an appointed hour. Sometimes the sleeper may be shaken and tumbled about in his bed without waking, but if he be addressed by name he will usually reply. It is scarcely probable that the auditory apparatus is any more wakeful than other portions of the nervous system, but its external portions remain during sleep more completely exposed and adapted to the reception of impressions than is possible for the eye and for the organs of touch and taste.

The persistent sensitiveness of the ear during sleep is not so much a capacity for noticing sounds as a sensibility to variations in sonorous impressions. Thus a steady and monotonous noise may, if long continued, serve to render one sleepy; but the sudden cessation of the same sound will awaken every one. Slowly lulled to sleep by the incessant rumble of the engine upon one of the old-fashioned Long Island Sound steamboats, how immediate the awakening of a whole cabin full of people, when the wheels were suddenly stopped! A recent traveler in Guiana relates a curious experience with an Indian magician who undertook to cure him of a slight headache and fever. The method of cure consisted in placing the patient at night in his hammock, while the magician kept up a hideous succession of yells and shouts, shaking the walls and roof of the house with an uproar which never ceased for six hours. Before long the patient passed into a kind of fitful sleep or stupor, during which he seemed to be suspended in a surging ocean of sound. When the noise died away, as if growing fainter in the distance, he would rouse up into a semi-conscious state, but when it again increased he would fall back into stupor. At last, when the noise finally ceased, he awoke completely, but without the slightest relief from headache--an experience quite illustrative of the manner in which the brain may be affected by sound.

It is not often that the sense of smell becomes the avenue of impressions that interfere with sleep. So different are the capacities of individuals in this particular that an odor which might severely annoy one person, would pass almost unnoticed by another. Large cities are sometimes invaded by overwhelming stenches from the various factories which spring up in their neighborhood. While it is seldom true that the vapors discharged by such establishments are directly deleterious to health, they may become indirectly a cause of ill-health through the wakefulness occasioned by them among weakly invalids. The smell of smoke in a bed-chamber sometimes serves to awaken a sleeper, giving warning of the outbreak of a fire in the building. Less energetic odors may disturb the depth of sleep without actually waking the patient. Thus Maury records that when he was made to inhale the vapor of cologne water while asleep, he dreamed of being in the shop of a perfumer.

Excitement of the sense of taste would, doubtless, operate in a similar manner; but it is so difficult to arouse this sense without at the same time irritating the nerves of common sensation about the mouth, that very little can be said regarding the matter. Dreams of gustatory sensations are usually of subjective origin, dependent upon some reflex movement, or upon some agitation of the organ of memory, within the brain.

The evil effects of a high temperature are greatly aggravated by the presence of humidity in the atmosphere. Dampness interferes with the process of exhalation from the surface of the body, which, consequently, tends to become overheated. The tissues, under such circumstances, are imperfectly defecated, and rapidly pass into a condition of imperfect nutrition. This depresses all the functions of the body, and renders the nervous system inordinately irritable. Sleep cannot be profound and refreshing, because of the over-excitable state of the brain. During the long, hot season in tropical countries, it often becomes necessary to seek a temporary retreat among the highlands and mountains, in order to find a climate sufficiently dry and cool to furnish the condition for refreshing sleep. For the same reason many of the inhabitants of the Southern United States are forced to spend the summer months in the invigorating atmosphere of Minnesota and Northern Michigan. One of the most delightful of experiences may be procured on any warm day in summer by embarking, at Chicago, upon one of the steamboats bound to Mackinac. At the wharf, in the hottest and dirtiest part of the city, all is dust, perspiration, and discomfort. The wide cabins are filled with people who are tired, thirsty, and discouraged. Sickly, squalling babies swarm in numbers sufficient to drive one mad. As the sun goes down, the signal-whistle sounds, head-lines and stern-lines are quickly cast off, the propeller churns the mire behind the boat. Slowly swings the huge fabric away from the shore, gliding between the walls of sun-scorched brick that line the stream on either side. At last the light-house at the mouth of the river is passed, and we are out upon the blue waves of Lake Michigan, with a heavenly breeze searching every crack and cranny of the hull. New life animates every form, and presently a great silence pervades the brilliant cabins. The children have left their woes behind, and, for the first time, in many weeks, perhaps, they and their weary mothers sleep the sleep of innocence and peace.

The dependence of a high atmospheric temperature upon the direction of the wind renders the course of the aerial currents a matter of great importance in relation to sleep. The southerly winds which, in the northern hemisphere, are hot and enervating, always produce an increase of wakefulness. The winds that blow from the heated deserts of Africa, Arabia, and Australia, are greatly dreaded upon this account, as well as for the other numerous discomforts which fly in their train. Their cessation, and their replacement by a cool, polar current brings relief at once. The changes thus produced in the electrical condition of the atmosphere doubtless contribute more than is usually known to these results. A cloudless sky gives evidence of positive electricity, which is much stronger in winter than in summer. Clouds are sometimes positive and sometimes negative. According to Fonssagrives the atmospheric electricity is positive during northerly winds, and negative during the prevalence of winds from the southerly quarters of the horizon. Great disturbances of the electrical condition of bodies is often observed during the occurrence of the sirocco in North Africa. Arago has related the case of an officer in the French army who saw sparks of electricity leaping from his epaulettes at every blast of the sirocco encountered on a march in the neighborhood of Algiers. Such atmospheric disturbances often produce very disagreeable effects upon persons of a nervous temperament. According to Fonssagrives such patients frequently experience, during the prevalence of storms which traverse great distances, a high degree of insomnia, together with headache, pains in the limbs, joints, and old injuries, and a general indefinable sensation of discomfort. S. Weir Mitchell has carefully traced the connection between these phenomena and the variations of barometric pressure which accompany the revolving storms that cross the continent in a northeasterly direction.

Though the effect of a high atmospheric temperature is unfavorable to sleep, an excessive temperature produces the opposite condition. Stupor rather than sleep is the consequence of insolation and of exposure to great heat from artificial sources. This is a pathological process, and, therefore, must not be mistaken for natural sleep. It may result either from cerebral congestion, or from cardiac exhaustion, and is characterized by an extraordinary bodily temperature and a high rate of mortality. So elaborate are the arrangements for the preservation of a uniform temperature throughout the body that it is practically impossible for a sunstroke to occur unless the regulative apparatus has been previously deranged by ill-health.

So intimately connected are the spinal cord and the brain that their disorders may properly be considered together. These may be classified as:

Active hyperaemia of the nervous centers has been above mentioned as the consequence of cerebral function under unfavorable conditions. But, as the disorder persists, its type undergoes a change. We still speak of the disorder as functional in its character, but it continually tends to become organic. No visible alterations, perhaps, can be detected, but, evidently, there are radical changes in the substance of the nervous tissue. Nutrition suffers throughout the body to a degree that attracts attention. The blood diminishes in quantity and quality, till the patient becomes notably anaemic. In this condition the brain is inordinately excitable. It is incapable of sustained activity, and the patient may even be oppressed by an inclination to constant drowsiness; yet he will be unable to sleep soundly, and his sleep will be continually agitated by dreams. This state is one of the constant accompaniments of slow starvation. The molecular structure of the nervous organs seems to be so slightly constructed, under such circumstances, that its equilibrium is disturbed by the most trifling incidents. It may be likened to a lofty wall of bricks laid up without mortar--"if a fox go up," the entire structure may be thrown down with a tremendous noise. Thus the anaemic and irritable brain will react excessively under the slightest impression; consciousness is invaded by perceptions which would never arise under normal conditions of the nervous tissue; and the mind is continually aroused. This form of wakefulness is very frequent among women who have become anaemic, and among patients who are slowly convalescing from exhausting diseases.

It is impossible in every instance to decide whether a given state of wakefulness is the result of cerebral hyperaemia or anaemia. In the one case the persistence of wakeful activity of the mind is due to excitement of the cerebral cells, accompanied by a lavish irrigation of their substance with the plasma of the blood. In the other case the excitement is occasioned, not so much by increased afflux of the blood, as by a morbid instability of the nervous substance. The outcome in both cases is very similar--mental excitement and wakefulness.

In a third class of cases the agitation of the brain is produced by the direct action of certain chemical agents upon the cortical substance. Tea and coffee are familiar examples of such agents. The caffeine, by virtue of which they produce their effect, when transported to the brain, enters into combination with its protoplasm in such a way as to stimulate molecular movement. Perception is thus quickened, and the mind is aroused. Sleep is postponed until the effect of the stimulant has subsided. This form of wakefulness is quite different from that produced by alcoholic drinks. These operate, when taken in small quantities, to favor cerebral equilibrium--and consequent equanimity--by producing a general dilatation of the smaller blood-vessels. Their anaesthetic influence is favorable to sleep, under such circumstances. But, if frequently repeated, these doses of alcohol modify the nutrition of the nervous system until, at last, a condition of irritable weakness is reached, in which wakefulness of a most distressing character is experienced.

Finally, it must be observed that wakefulness may result from excitement of the brain by irritating substances transported through the blood from distant centers of disease in remote organs of the body, or derived from articles that have been absorbed with the food and drink, or with the air that enters the lungs. Thus wakefulness may accompany cutaneous disorders that interfere with perspiration. Imperfect elimination through the liver, kidneys and intestines, leaves the blood charged with excrementitious substances which arouse the brain to wakefulness. In like manner, various poisons, like lead, arsenic, etc., different miasms of telluric origin, the products of putrefaction, and the various animal contagia, may produce insomnia by their prejudicial effect upon the nutrition of the nervous structures throughout the body.

Add to tbrJar First Page Next Page

 

Back to top