bell notificationshomepageloginedit profileclubsdmBox

Read Ebook: Creation of the Teton Landscape: The Geologic Story of Grand Teton National Park by Love J D John David Reed John C John Calvin

More about this book

Font size:

Background color:

Text color:

Add to tbrJar First Page Next Page Prev Page

Ebook has 269 lines and 52502 words, and 6 pages

Glaciers scour and transport

Mountain landscapes shaped by frost action, gravitational transport, and stream erosion alone generally have rounded summits, smooth slopes, and V-shaped valleys. The jagged ridges, sharply pointed peaks, and deep U-shaped valleys of the Tetons show that glaciers have played an important role in their sculpture. The small present-day glaciers still cradled in shaded recesses among the higher peaks are but miniature replicas of great ice streams that occupied the region during the Ice Age. Evidence both here and in other parts of the world confirms that glaciers were once far more extensive than they are today.

Glaciers form wherever more snow accumulates during the winter than is melted during the summer. Gradually the piles of snow solidify to form ice, which begins to flow under its own weight. Rocks that have fallen from the surrounding ridges or have been picked up from the underlying bedrock are incorporated in the moving ice mass and carried along. The ability of ice to transport huge volumes of rock is easily observed even in the small present-day glaciers in the Tetons, all of which carry abundant rock fragments both on and within the ice.

Recent measurements show that the ice in the present Teton Glacier moves nearly 30 feet per year. The ancient glaciers, which were much wider and deeper, may have moved as much as several hundred feet a year, like some of the large glaciers in Alaska.

As the glacier moves down a valley, it scours the valley bottom and walls. The efficiency of ice in this process is greatly increased by the presence of rock fragments which act as abrasives. The valley bottom is plowed, quarried, and swept clean of soil and loose rocks. Fragments of many sizes and shapes are dragged along the bottom of the moving ice and the hard ones scratch long parallel grooves in the underlying tough bedrock . Such grooves record the direction of ice movement.

The effectiveness of glaciers in cutting a U-shaped valley is particularly striking in Glacier Gulch and Cascade Canyon .

The sharp peaks and the jagged knife-edge ridges so characteristic of the Tetons are divides left between cirques and valleys carved by the ancient glaciers.

Effects on Jackson Hole

Just as the jagged ridges, U-shaped valleys, and ice-polished rocks of the Teton Range attest the importance of glaciers in carving the mountain landscape, the flat gravel outwash plains and hummocky moraines on the floor of Jackson Hole demonstrate their efficiency in transporting debris from the mountains and shaping the scenery of the valley.

Glaciers sculptured all sides of Jackson Hole and filled it with ice to an elevation between 1,000 and 2,000 feet above the present valley floor. The visitor who looks eastward from the south entrance to the park can see clearly glacial scour lines that superficially resemble a series of terraces on the bare lower slopes of the Gros Ventre Mountains. Southward-moving ice cut these features in hard rocks. Elsewhere around the margins of Jackson Hole, especially where the rocks are soft, evidence that the landscape was shaped by ice has been partly or completely obliterated by later events. Rising 1,000 feet above the floor of Jackson Hole are several steepsided buttes described previously, that represent "islands" of hard rock overridden and abraded by the ice. After the ice melted, these buttes were surrounded and partly buried by outwash debris.

The story of the glaciers and their place in the geologic history of the Teton region is discussed in more detail later in this booklet.

MOUNTAIN UPLIFT

Mountains appear ageless, but as with people, they pass through the stages of birth, youth, maturity, and old age, and eventually disappear. The Tetons are youthful and steep and are, therefore, extremely vulnerable to destructive processes that are constantly sculpturing the rugged features and carrying away the debris. The mountains are being destroyed. Although the processes of destruction may seem slow to us, we know they have been operating for millions of years--so why have the mountains not been leveled? How did they form in the first place?

Kinds of mountains

There are many kinds of mountains. Some are piles of lava and debris erupted from a volcano. Others are formed by the bowing up of the earth's crust in the shape of a giant dome or elongated arch. Still others are remnants of accumulated sedimentary rocks that once filled a basin between preexisting mountains and which are now partially worn away. An example of this type is the Absaroka Range 40 miles northeast of the Tetons .

Anatomy of faults

The preceding discussion shows that the Tetons are an upfaulted mountain block. Why is this significant? The extreme youth of the Teton fault, its large amount of displacement, and the fact that the newly upfaulted angular mountain block was subjected to intense glaciation are among the prime factors responsible for the development of the magnificent alpine scenery of the Teton Range. An understanding of the anatomy of faults is, therefore, pertinent.

Normal faults may be the result of tension or pulling apart of the earth's crust or they may be caused by adjustment of the rigid crust to the flow of semi-fluid material below. The crust sags or collapses in areas from which the subcrustal material has flowed and is bowed up and stretched in areas where excess subcrustal material has accumulated. In both areas the adjustments may result in normal faults.

Reverse faults are generally caused by compression of a rigid block of the crust, but some may also be due to lateral flow of subcrustal material.

Thrust faults are commonly associated with tightly bent or folded rocks. Many of them are apparently caused by severe compression of part of the crust, but some are thought to have formed at the base of slides of large rock masses that moved from high areas into adjacent low areas under the influence of gravity.

The Teton fault is a normal fault; the Buck Mountain fault, which lies west of the main peaks of the Teton Range, is a reverse fault. No thrust faults have been recognized in the Teton Range, but the mountains south and southwest of the Tetons display several enormous thrust faults along which masses of rocks many miles in extent have moved tens of miles eastward and northeastward.

Time and rate of uplift

When did the Tetons rise?

A study of the youngest sedimentary rocks on the floor of Jackson Hole shows that the Teton Range began to rise rapidly and take its present shape less than 9 million years ago. The towering peaks themselves are direct evidence that the rate of uplift far exceeded the rate at which the rising block was worn away by erosion. The mountains are still rising, and comparatively rapidly, as is indicated by small faults cutting the youngest deposits .

How rapidly? Can the rate be measured?

We know that in less than 9 million years there has been 25,000 to 30,000 feet of displacement on the Teton fault. This is an average of about 1 foot in 300-400 years. The movement probably was not continuous but came as a series of jerks accompanied by violent earthquakes. One fault on the floor of Jackson Hole near the southern boundary of the park moved 150 feet in the last 15,000 years, an average of 1 foot per 100 years.

In view of this evidence of recent crustal unrest, it is not surprising that small earthquakes are frequent in the Teton region. More violent ones can probably be expected from time to time.

Why are mountains here?

Why did the Tetons form where they are?

At the beginning of this booklet we discussed briefly the two most common theories of origin of mountains: continental drift and convection currents. The question of why mountains are where they are and more specifically why the Tetons are here remains a continuing scientific challenge regardless of the wealth of data already accumulated in our storehouse of knowledge.

The mobility of the earth's crust is an established fact. Despite its apparent rigidity, laboratory experiments demonstrate that rocks flow when subjected to extremely high pressures and temperatures. If the stress exceeds the strength at a given pressure and temperature, the rock breaks. Flowing and fracturing are two of the ways by which rocks adjust to the changing environments at various levels in the earth's crust. These acquired characteristics, some of which can be duplicated in the laboratory, are guides by which we interpret the geologic history of rocks that once were deep within the earth.

The site of the Teton block no doubt reflects hidden inequalities at depth. We cannot see these, nor in this area can we drill below the outer layer of the earth; nevertheless, measurements of gravity and of the earth's magnetic field clearly show that they exist.

We know that the Tetons rose at the time Jackson Hole collapsed but the volume of the uplifted block is considerably less than that of the downdropped block. This, then, was not just a simple case in which all the subcrustal material displaced by the sinking block was squeezed under the rising block . What happened to the rest of the material that once was under Jackson Hole? It could not be compressed so it had to go somewhere.

As you look northward from the top of the Grand Teton or Mount Moran, or from the main highway at the north edge of Grand Teton National Park, you see the great smooth sweep of the volcanic plateau in Yellowstone National Park. Farther off to the northeast are the strikingly layered volcanic rocks of the Absaroka Range . For these two areas, an estimate of the volume of volcanic rock that reached the surface and flowed out, or was blown out and spread far and wide by wind and water, is considerably in excess of 10,000 cubic miles. On the other hand, this volume is many times more than that displaced by the sagging and downfaulting of Jackson Hole.

Where did the rest of the volcanic material come from? Is it pertinent to our story? Teton Basin, on the west side of the Teton Range, and the broad Snake River downwarp farther to the northwest are sufficiently large to have furnished the remainder of the volcanic debris. As it was blown out of vents in the Yellowstone-Absaroka area, its place could have been taken deep underground by material that moved laterally from below all three downdropped areas. The movement may have been caused by slow convection currents within the earth, or perhaps by some other, as yet unknown, force. The sagging of the earth's crust on both sides of the Teton Range as well as the long-continued volcanism are certainly directly related to the geologic history of the park.

In summary, we theorize as to how the Tetons rose and Jackson Hole sank but are not sure why the range is located at this particular place, why it trends north, why it rose so high, or why this one, of all the mountain ranges surrounding the Yellowstone-Absaroka volcanic area, had such a unique history of uplift. These are problems to challenge the minds of generations of earth scientists yet to come.

The restless land

Among the greatest of the park's many attractions is the solitude one can savor in the midst of magnificent scenery. Only a short walk separates us from the highway, torrents of cars, noise, and tension. Away from these, everything seems restful.

Quiescent it may seem, yet the landscape is not static but dynamic. This is one of the many exciting ideas that geology has contributed to society. The concept of the "everlasting hills" is a myth. All the features around us are actually rather short-lived in terms of geologic time. The discerning eye detects again and again the restlessness of the land. We have discussed many bits of evidence that show how the landscape and the earth's crust beneath it are constantly being carved, pushed up, dropped down, folded, tilted, and faulted.

The Teton landscape is a battleground, the scene of a continuing unresolved struggle between the forces that deform the earth's crust and raise the mountains and the slow processes of erosion that strive to level the uplands, fill the hollows, and reduce the landscape to an ultimate featureless plain. The remainder of this booklet is devoted to tracing the seesaw conflict between these inexorable antagonists through more than 2.5 billion years as they shaped the present landscape--and the battle still goes on.

Evidence of the struggle is all around us. Even though to some observers it may detract from the restfulness of the scene, perhaps it conveys to all of us a new appreciation of the tremendous dynamic forces responsible for the magnificence of the Teton Range.

The battle is indicated by the small faults that displace both the land surface and young deposits at the east base of Mount Teewinot, Rockchuck Peak , and other places along the foot of the Tetons.

Jackson Hole continues to drop and tilt. The gravel-covered surfaces that originally sloped southward are now tilted westward toward the mountains. The Snake River, although the major stream, is not in the lowest part of Jackson Hole; Fish Creek, a lesser tributary near the town of Wilson, is 15 feet lower. For 10 miles this creek flows southward parallel to the Snake River but with a gentler gradient, thus permitting the two streams to join near the south end of Jackson Hole. As tilting continues, the Snake River west of Jackson tries to move westward but is prevented from doing so by long flood-control levees built south of the park.

Recent faults also break the valley floor between the Gros Ventre River and the town of Jackson.

The ever-changing piles of rock debris that mantle the slopes adjacent to the higher peaks, the creeping advance of rock glaciers, the devastating snow avalanches, and the thundering rockfalls are specific reminders that the land surface is restless. Jackson Hole contains more landslides and rock mudflows than almost any other part of the Rocky Mountain region. They constantly plague road builders and add to the cost of other types of construction.

All of these examples of the relentless battle between constructive and destructive processes modifying the Teton landscape are but minor skirmishes. The bending and breaking of rocks at the surface are small reflections of enormous stresses and strains deep within the earth where the major conflict is being waged. It is revealed every now and then by a convulsion such as the 1959 earthquake in and west of Yellowstone Park. Events of this type release much more energy than all the nuclear devices thus far exploded by man.

ENORMOUS TIME AND DYNAMIC EARTH

Framework of time

One of geology's greatest philosophical contributions has been the demonstration of the enormity of geologic time. Astronomers deal with distances so great that they are almost beyond understanding; nuclear physicists study objects so small that we can hardly imagine them. Similarly, the geologist is concerned with spans of time so immense that they are scarcely comprehensible. Geology is a science of time as well as rocks, and in our geologic story of the Teton region we must refer frequently to the geologic time scale, the yardstick by which we measure the vast reaches of time in earth history.

Rocks and relative age

An intrusive igneous rock must be younger than the rocks that enclosed it at the time it solidified. It may contain pieces of the enclosing rocks that broke off the walls and fell into the liquid. Pebbles of the igneous rock that are incorporated in nearby sedimentary layers indicate that the sediments must be somewhat younger.

Add to tbrJar First Page Next Page Prev Page

 

Back to top