Read Ebook: The Gourmet's Guide to London by Newnham Davis Lieut Col Nathaniel
Font size:
Background color:
Text color:
Add to tbrJar First Page Next Page
Ebook has 100 lines and 16533 words, and 2 pages
PAGE PREFACE TO SECOND EDITION v
PREFACE vii
INTRODUCTORY 1
Foreword--Early experiments--Advantages of Radio-Photography--Difficulties in Cable working--Bernochi's System--Knudsen's System.
TRANSMITTING APPARATUS 13
Wireless Apparatus--Preparing the Photographs--Transmitting Machines--Transmitting Apparatus--Effects of Arcing--Spark-Gaps--Contact Breakers--Complete Station--Professor Korn's Apparatus--Poulsen Company's Photographic Recorder--Comparison of various systems--Practical applications.
RECEIVING APPARATUS 37
Methods of Receiving--Author's Photographic Receiver--Decohering Apparatus--Description of Einthoven Galvanometer--Use of Galvanometer in Receiving--Belin's Application of Blondel's Oscillograph--Description of Charbonelle's Receiver--Use of Telephone Relay--Description of Telephone Relay--Telephotographic Receiver--Polarisation Receiver--Kathode-Ray Receiver--Electrolytic Receiver--Atmospherics in Long-Distance working.
SYNCHRONISING AND DRIVING 63
Driving Motors--Isochronising the Electrolytic System--Professor Korn's method--Description of Hughes Governor--Author's Speed Regulator--Problem of Synchronising--Methods of Synchronising--Advances made in Radio-Photography.
THE "TELEPHOGRAPH" 74
Author's System of Radio-Photography--Requirements--Advantages--Transmitting machine--Description of Differential Relay--Wireless Receiving Apparatus--Photo-Telegraphic Receiving Apparatus--Circuit Breaker--Friction Brake--Magnetic Clutch--Description of Isochroniser--Method of working--Types of Nernst Lamp--Action of Nernst Lamp--Comparison of Actinic Value--Inertia of Photographic Films--Choosing Films--Speed of Films--Standard of Speed--Comparative Film Speeds--Effects of Minimum Exposure--Effects of Maximum Exposure--Considerations in working and choosing Films.
SELENIUM CELLS 109
Nature of Selenium--Preparation of Selenium--Forms of Selenium Cells--Action of Selenium Cells--Characteristics of Selenium Cells--Effects of Inertia in Photo-Telegraphy--Methods of counteracting Inertia--Sensitiveness of Selenium to Light--Effect of Heat on Selenium.
PREPARING THE METAL PRINTS 115
Outline of Process--Line Screens--Choice of Camera--Fixing Line Screen in Camera--Lenses and Stops--Taking the Photograph--Copying Stands--Choice of Photographic Plates--Sources of Illumination--Metal Prints--Coating the Metal Sheets--Sensitising Solution--Printing Operations--Developing--Intensifying--Precautions to be observed in working--Preparing Sketches on Metal--Apparatus for Reducing or Enlarging--Improvements to Copying Board--Lenses for Copying--Formula for Copying.
LENSES 126
Action of Light--Law of Refraction--Lenses--Prisms--Action of Lenses--Focal Length of Lenses--Formation of Images--Apparent Magnitude of Objects--Real and Virtual Images--Formation of Virtual Images--Power of Magnification--Defects of Lenses--Aberration.
FIG. PAGE
RADIO-PHOTOGRAPHY
INTRODUCTORY
The wireless transmission of photographs has, no doubt, a great commercial value, but for any system to be commercially practicable, it must be simple, rapid, and reliable, besides being able to work in conjunction with the apparatus already installed for the purpose of ordinary wireless telegraphy.
As far back as 1847 experiments were carried out with a view to solving the problem of transmitting pictures and writing by electrical methods over artificial conductors, but no great incentive was held forth for development owing to lack of possible application; but owing to the great public demand for illustrated newspapers that has recently sprung into being, a large field has been opened up. During the last ten years, however, development has been very rapid, and some excellent results are now being obtained over a considerable length of line.
The wireless transmission of photographs is, on the other hand, of quite recent growth, the first practicable attempt being made by Mr. Hans Knudsen in 1908. It may seem rather premature to talk about the wireless transmission at a time when the systems for transmitting over ordinary conductors are not perfectly developed, but everything points to the fact that for long-distance transmission a reliable wireless system will prove to be both cheaper and quicker than transmission over ordinary land lines and cables.
The effects of capacity and inductance--properties inherent to all telegraph systems using metallic conductors--have a distinct bearing upon the two questions, how far and how quickly can photographs be transmitted? Owing to the small currents received and to prevent interference from earth currents it is necessary to use a complete metallic circuit. If an overhead line could be employed no difficulty would be experienced in working a distance of over 1000 miles, but a line of this length is impossible--at least in this country--and if transmission is attempted with any other country, a certain amount of submarine cable is essential. It has been found that the electrostatic capacity of one mile of submarine cable is equal to the capacity of 20 miles of overhead line, and as the effect of capacity is to retard the current and reduce the speed of working, it is evident that where there is any great length of cable in the circuit the distance of possible transmission is enormously reduced.
If we take for an example the London-Paris telephone line with a length of 311 miles and a capacity of 10.62 microfarads, we find that about half this capacity, or 5.9 microfarads, is contributed by the 23 miles of cable connecting England with France.
There have been numerous suggestions put forward for the wireless transmission of photographs, but they are all more or less impracticable. One of the earliest systems was devised by de' Bernochi of Turin, but his system can only be regarded interesting from an historical point of view, and as in all probability it could only have been made to work over a distance of a few hundred yards it is of no practical value. Fig. 2 will help to explain the apparatus. A glass cylinder A' is fastened at one end to a threaded steel shaft, which runs in two bearings, one bearing having an internal thread corresponding with that on the shaft. Round the cylinder is wrapped a transparent film upon which a photograph has been taken and developed. Light from a powerful electric lamp L, is focussed by means of the lens, N, to a point upon the photographic film. As the cylinder is revolved by means of a suitable motor, it travels upwards simultaneously by reason of the threaded shaft and bearing, so that the spot of light traces a complete spiral over the surface of the film. The light, on passing through the film , is refracted by the prism P on to the selenium cell S which is in series with a battery B and the primary X of a form of induction coil. As light of different intensities falls upon the selenium cell, the resistance of which alters in proportion, current is induced in the secondary Y of the coil and influences the light of an arc lamp of whose circuit it is shunted. This arc lamp T is placed at the focus of a parabolic reflector R, from which the light is reflected in a parallel beam to the receiving station.
The receiver consists of a similar reflector R' with a selenium cell E placed at its focus, whose resistance is altered by the varying light falling upon it from the reflector R. The selenium cell E is in series with a battery F and the mirror galvanometer H. Light falls from a lamp D and is reflected by the mirror of the galvanometer on to a graduated aperture J and focussed by means of the aplanatic lens U upon the receiving drum A^2, which carries a sensitised photographic film. The two cylinders must be revolved synchronously. The above apparatus is very clever, but cannot be made to work over a distance of more than 200 yards.
A system based on more practical lines was that invented and demonstrated by Mr. Hans Knudsen, but the apparatus which he employed for receiving has been discarded in wireless work, as it is not suitable for working with the highly-tuned systems in use at the present time.
Knudsen's transmitter, a diagrammatic representation of which is given in Fig. 3, consists of a flat table to which a horizontal to-and-fro motion is given by means of a clockwork motor. Upon this table is fastened a photographic plate which has been prepared in the following manner. The plate upon which the photograph is to be taken has the gelatine film from three to four times thicker than that commonly used in photography. In the camera, between the lens and this plate, a single line screen is interposed, which has the effect of breaking the picture up into parallel lines. Upon the plate being developed and before it is completely dry, it is sprinkled over with fine iron dust. With this type of plate the transparent parts dry much quicker than the shaded or dark parts, and on the iron dust being sprinkled over the plate it adheres to the darker portions of the film to a greater extent than it does to the lighter portions; a picture partly composed of iron dust is thus obtained. A steel point attached to a flat spring rests upon this plate and is made to travel at right angles to the motion of the table. As the picture is partly composed of iron dust, and as the steel needle is fastened to a delicate spring it is evident that as the plate passes to and fro under the needle, both the spring and needle are set in a state of vibration. This vibrating spring makes and breaks the battery circuit of a spark coil, which in turn sets up sparking in the spark-gap of the wireless apparatus.
The receiver consists of a similar table to that used for transmitting, and carries a glass plate that has been smoked upon one side. A similar spring and needle is placed over this plate, but is actuated by means of a small electro-magnet in circuit with a battery and a sensitive coherer. As the coherer makes and breaks the battery circuit by means of the intermittent waves sent out from the transmitting aerial, the needle is made to vibrate upon the smoked glass plate in unison with the needle at the transmitting end. Scratches are made upon the smoked plate, and these reproduce the picture on the original plate. A print can be taken from this scratched plate in a similar manner to an ordinary photographic negative.
The two tables are synchronised in the following manner. Every time the transmitting table is about to start its forward stroke a powerful spark is produced at the spark-gap. The waves set up by this spark operate an ordinary metal filings coherer at the receiving end which completes the circuit of an electro-magnet. The armature of this magnet on being attracted immediately releases the motor used for driving, allowing it to operate the table. The time taken to transmit a photograph, quarter-plate size, is about fifteen minutes. Although very ingenious this system would not be practicable, as besides speed the quality of the received pictures is a great factor, especially where they are required for reproduction purposes. The results from the above apparatus are said to be very crude, as with the method used to prepare the photographs no very small detail could be transmitted.
TRANSMITTING APPARATUS
Let us now consider the requirements necessary for transmitting photographs by means of the wireless apparatus in use at the present time.
The connections for an experimental syntonic wireless transmitting station are shown in the diagram Fig. 4. A is the aerial; T, the inductance; E, earth; L, hot-wire ammeter. The closed oscillatory circuit consists of an inductance F, spark-gap G, and a block condenser C. H is a spark-coil for supplying the energy, the secondary J being connected to the spark-gap. A mercury break N and a battery B are placed in the primary circuit of the coil. The Morse key K is for completing the battery circuit for signalling purposes. When the key K is depressed, the battery circuit is completed, and a spark passes between the balls of the spark-gap G producing oscillations in the closed circuit, which are transposed to the aerial circuit by induction. For signalling purposes it is only necessary for the operator by means of the key K to send out a long or short train of waves in some pre-arranged order, to enable the operator at the receiving station to understand the message that is being transmitted.
If a photograph could be prepared in such a manner that it would serve the purpose of the key K, and could so arrange matters that a minute portion of the photograph could be transmitted separately but in succession, and that each portion of the photograph having the same density could be given the same signal, then it would only be necessary to have apparatus at the receiving station capable of arranging the signals in proper sequence in order to receive a facsimile of the picture transmitted.
Before proceeding further it will perhaps be as well to make an experiment. If we take one of the metal prints or, more simple, draw a sketch in insulating ink upon a sheet of metal A, Fig. 5, and connect a battery B and the galvanometer D as shown, we shall find on drawing the free end of the wire across the metal plate that all the time the wire is in contact with the lines of insulating material the needle of the galvanometer will remain at zero, but where it is in contact with the metal plate the needle is deflected.
From this experiment it will be seen that we have in our metal line print, which consists of alternate lines of insulating and conducting material, a method by which an electric circuit can be very easily made and broken. It is, of course, necessary to have some arrangement whereby the whole of the surface of the metal print is utilised for this purpose to the best advantage. One type of transmitting machine used for this purpose is represented by the diagram, Fig. 6. The cylinder A is fastened to the steel shaft B, which runs in the two bearings D and D', the bearing D' having an internal thread corresponding to that on the shaft. The stylus in this class of machine is a fixture, the cylinder being given a lateral as well as a revolving movement. As it is impossible to use a rigid drive, a flexible coupling F is employed between the shaft B and the motor.
Another type of machine is shown in Fig. 7. The drum in this case is stationary, the table T moving laterally by reason of the screwed shaft and half nut F. The table, shown separate in Fig. 8, carries a stiff brass spring A, to which is attached a holder B made to take a hardened steel point. The holder is provided with a set screw P for securing the steel point Z. The spring and needle are insulated from the rest of the machine, as shown in the drawing. In working, the metal print is wrapped tightly round the cylinder of the machine, the glue image being, of course, uppermost. To fasten the print a little seccotine should be applied to one edge, and the joint carefully smoothed down with the fingers. If there is any tendency on the part of the print to slip round on the drum, a couple of small spring clips placed over the ends of the drum will act as a preventive. It is necessary to place the print upon the drum in such a manner that the stylus draws away from the edge of the lap and not towards it, and the metal prints should be of such a size that when placed round the drum of the machine a lap of about 3/16ths of an inch is allowed.
The steel point Z is made to press lightly upon the metal print, and while the pressure should be sufficient to make good electrical contact, it should not be sufficient to cause the needle to scratch the surface of the foil. The pressure is regulated by means of the milled nut H. The electrical connections are given in Fig. 9. One wire from the battery M is taken to the terminal T, and the other wires from M and F lead to the relay R. The current flows from the battery M through the spring Y, through the drum and metal print, the stylus Z, spring A, down to the relay R, and from R back to the battery M. As the drum carrying the single line half-tone print is revolved, the stylus, by reason of the lateral movement given to the table or cylinder as the case may be, will trace a spiral path over the entire surface of the print. As the stylus traces over a conducting strip the circuit is completed, and the tongue of the relay R is attracted, making contact with the stop S. On passing over a strip of insulation the circuit is broken and the tongue of the relay R returns to its normal position.
As already stated, the conducting and insulating bands on the print vary in width according to the density of the photograph from which it is prepared, so that the length of time that the tongue of the relay R is held against the stop S, is in proportion to the width of the conducting strip which is passing under the stylus at any instant. The function of the transmitter is therefore to send to the relay R an intermittent current of varying duration.
Although the design of the machines is rather simple great attention must be paid both to accuracy of construction and accuracy of working, and this applies, not only to the machines but for all the various pieces of apparatus that are used. Too much care cannot be bestowed upon this point, as in the wireless transmission of photographs there is a large number of instruments all requiring careful adjustment, and which have to work together in perfect unison at a high speed.
We have now an arrangement that is capable of taking the place of the key K, Fig. 4, and the diagram, Fig. 11, gives the connections for the complete transmitter. A is the aerial, E earth, T inductance, L ammeter. The closed oscillatory circuit consists of a spark-gap G, inductance F, and a condenser C. The secondary J of the coil H is connected to the spark-gap, and the primary P is in circuit with the mercury break N, the battery B, and the local contacts of the relay R. The action is as follows. When contact is made between the stylus Z and the drum V by means of the conducting bands on the line print, the circuit of the relay R and the battery M is completed. The closing of the local circuit of the relay R actuates the second relay R', allowing the primary circuit of the coil H to be closed. As soon as the primary circuit of the coil is completed sparks pass between the electrodes of the spark-gap G, causing waves to radiate from the aerial. The duration of the wave-trains radiated depends upon the duration of contact made by the relays R and R', and this in turn depends upon the width of the conducting strip that is passing under the stylus. The battery M should be about 4 volts, and the battery D about 2 volts. The two-way switch X is connected up so that the relay R' can be thrown out and the key K switched in for ordinary signalling purposes. If any sparking takes place at the point of the stylus, a small condenser C' should be connected as shown. In the present instance the condenser should be used more as a preventive than as a cure, as in all probability the voltage from M will not be sufficient to cause destructive sparking; but, as most wireless workers know, anything in the nature of a spark occurring in the neighbourhood of a detector is liable to destroy the adjustment.
In transmitting over ordinary conductors where the initial voltage is fairly high and the self-induction of the circuit very great, the use of the condenser will be found to be absolutely essential. It has also been noted that the angle which the stylus presents to the drum has a marked effect upon the sparking, an angle of about 60? being found to give very good results.
Relays sensitive and accurate enough to work at this speed will in all probability be beyond the reach of the majority of workers, but there are several types of relays on the market very reasonable in price that will answer very well for experimental work, although the speed of working will no doubt be slower.
For the best results the duration of the wave-trains sent out should be of the same duration as the contact made by R, and therefore equal to the time taken by the stylus to trace over a conducting strip; but if the duration of the contact made by R is t, then that made by R' and consequently the duration of the groups of wave-trains would be t - v where v equals the extra time required by R' to complete its local circuit. The difference in time made by the two relays, although very slight, will be found to affect very considerably the quality of the received pictures. Renewing the platinum contacts is also a great expense, as they are soon burnt out where a heavy current is passed. If the distance experimented over is short so that the power required to operate the spark-coil is not very heavy, one relay will be sufficient providing the contacts are massive enough to carry the current safely. It is useless to expect any of the ordinary relays in general use to work satisfactorily at such a high speed, and in order to compensate for this we must either increase the time of transmitting, or, as already suggested, make use of a coarser line screen in preparing the photographs.
For reasons already explained, all points of make and break should be shunted by a condenser. The effective working speed of an ordinary type of relay may be anything from 1000 to 2500 dots a minute, depending upon accuracy of design and construction.
In the wireless transmission of photographs it is absolutely essential to use some form of rotary spark-gap, as where sparks are passed in rapid succession the ordinary type of gap is worse than useless. When a spark passes between the electrodes of an ordinary spark-gap, Fig. 12, we find that for a fraction of a second after the first spark has passed, the normally high resistance of the gap has been lowered to less than one ohm. If the column of hot gas which constitutes the spark is not instantly dispersed, but remains between the electrodes, it will provide an easy path for any further discharges, and if sparks are passed at all rapidly, what was at first a disruptive and oscillatory discharge will degenerate into a hot, non-oscillatory arc.
Two forms of rotating spark-gaps are shown in Figs. 13 and 14, and are known as "synchronous" and "non-synchronous" gaps respectively. In the synchronous gap the cog-wheel is mounted on the shaft of the alternator, and a cog comes opposite the fixed electrode when the maximum of potential is reached in the condenser, thus ensuring a discharge at every alternation of current. With this type of gap a spark of pure tone is obtained which is of great value where the signals are received by means of a telephone, but where the signals are to be mechanically recorded the tone of the spark is of little consequence. In a non-synchronous gap a separate motor is used for driving the toothed wheel, and can either be mounted on the motor shaft or driven by means of a band, there being no regard given to synchronism with the alternator. The fixed electrode is best made long enough to cover about two of the teeth, as this ensures regular sparking and a uniform sparking distance; the spark length is double the length of the spark-gap. The toothed wheel should revolve at a high speed, anything from 5000 to 8000 revolutions per minute, or even more being required. The shaft of the toothed wheel is preferably mounted in ball-bearings.
Owing to the large number of sparks that are required per minute in order to transmit a photograph at even an ordinary speed, it is necessary that the contact breaker be capable of working at a very high speed indeed. The best break to use is what is known as a "mercury jet" interrupter, the frequency of the interruptions being in some cases as high as 70,000 per second. No description of these breaks will be given, as the working of them is generally well understood.
In some cases an alternator is used in place of the battery B, Fig. 4, and when this is done the break M can be dispensed with. In larger stations the coil H is replaced with a special transformer.
Add to tbrJar First Page Next Page