Read Ebook: The Gourmet's Guide to London by Newnham Davis Lieut Col Nathaniel
Font size:
Background color:
Text color:
Add to tbrJar First Page Next Page Prev Page
Ebook has 100 lines and 16533 words, and 2 pages
In some cases an alternator is used in place of the battery B, Fig. 4, and when this is done the break M can be dispensed with. In larger stations the coil H is replaced with a special transformer.
The writer has designed an improved relay which will respond to currents lasting only 1/100th part of a second, and capable of dealing with rather large currents in the local circuit. This relay has not yet been tried, but if it is successful the two relays R and R' can be dispensed with, and the result will be more accurate and effective transmission.
The receiving station is provided with an aperiodic circuit, which consists of an inductance F', condenser C', and a thermodetector N. A string galvanometer H , and the self-induction coils B, B' are connected as shown, the coils B, B' preventing the high-frequency currents, which change their direction, from flowing through the galvanometer. The manner in which the string galvanometer is arranged to reproduce a transmitted picture is shown in Fig. 24.
The connections adopted by the Poulsen Company for photographically recording wireless messages are given in Fig. 17, a string galvanometer of the Einthoven type being used. The two self-induction coils S and S' are in circuit with the detector D and the galvanometer G. The condenser C' prevents the continuous current produced by the detector from flowing through the high frequency circuit; P is the primary of the aerial inductance and F the secondary. The method of transmitting adopted by Professor Korn appears to be a simple and reliable arrangement, provided that an equally reliable method of producing the undamped waves can be found. Owing to the absence of mechanical inertia it should be capable of working at a good speed, while the absence of a number of pieces of delicate apparatus all requiring careful adjustment add greatly to its reliability.
In any spark system with a properly designed aerial a coil taking ten amperes is capable of transmitting signals over a distance of thirty to fifty miles, but where the number of interruptions of the break required per second is very high, as in radio-photography, it must be remembered that a much higher voltage is needed to drive the requisite amount of current through the primary winding of the coil than would be the case if the interruptions were slower. It is possible to use platinum contacts for the relays, for currents up to ten amperes, but for heavier currents than this some arrangement where contact is made with mercury will be found to be more economical and reliable.
In the transmitter already described and given in Fig. 11, the best results would be obtained by finding the speed at which the relay R' works best, and regulating the number of contacts made by the stylus accordingly.
The method employed by De' Bernochi of varying the intensity of a beam of light by passing it through a photographic film, which in turn alters the resistance of a selenium cell, has been very successfully employed in at least one system of photo-telegraphy. Its application has also been suggested for wireless transmission, and although with any system using continuous waves this would not be very difficult, it could hardly be adapted to work with the ordinary spark system. The apparatus for receiving from this type of transmitter would, on the other hand, necessarily be more elaborate than the methods that are described in the next chapter, and as far as the writer's experience goes, experiments along these lines would not prove very profitable, as simplicity is the keynote of success in any radio-photographic system.
It has been suggested that in order to decrease the time of transmission a cylinder capable of taking a print 7 inches by 5 inches be employed, the print being prepared from rather a coarse line screen--say 35 to the inch--and a traverse of about 1/50 inch given to the stylus, thus reducing the time of transmission to about twelve minutes. It is questionable, however, whether the increase in speed would compensate for the loss of detail, as only very bold subjects could be transmitted. As already pointed out, wireless transmission would only be employed for fairly long distances, and the extra time and expense required to receive a fairly good detailed picture is negligible when compared with the enormous time it would take to receive the original photograph by any ordinary means of transit.
RECEIVING APPARATUS
There are only two methods available at present for receiving the photographs, and both have been used in ordinary photo-telegraphic work with great success. They have disadvantages when applied to wireless work, however, but these will no doubt be overcome with future improvements. The two methods are by means of an ordinary photographic process, and by means of an electrolytic receiver.
In several photo-telegraphic systems the machine used for transmitting has the cylinder twice the size of the receiving cylinder, thus making the area of the received picture one-quarter the area of the picture transmitted. The extra quality of the received picture does not compensate for the disadvantage of having to provide two machines at each station, and in the writer's opinion results, quite good enough for all practical purposes, can be obtained by using a moderate size cylinder so that one machine answers for both transmitting and receiving, and using as fine a line screen as possible for preparing the photographs.
The writer, when first experimenting in photo-telegraphy, endeavoured to make the receiving apparatus "self-contained," and one idea which was worked out is given in Fig. 18. The electric lamp L is about 8 c.p., and is placed just within the focus of a lens which has a focal length of 3/4 inch. When a source of light is placed at some point between a lens and its principal focus, the light rays are not converged, but are transmitted in a parallel beam the same size as the lens. It has been found that this arrangement gives a sharper line on the drum than would be the case were the light focussed direct upon the hole in the cone A. An enlarged drawing of the cone is given in Fig. 19. The hole in the tip of the cone A is a bare 1/90 inch in diameter--the size of this hole depends upon the travel per revolution of the drum or table of the machine used--and in working, the cone is run as close as possible to the drum without being in actual contact. The magnet M is wound full with No. 40 S.C.C. wire, and the armature is made as light as possible. The spring to which the armature is attached should be of such a length that its natural period of vibration is equal to the number of contacts made by the transmitting stylus. The spring must be stiff enough to bring the armature back with a fairly crisp movement. The spring and armature is shown separate in Fig. 20.
The shutter C is about 1/4 inch square and made from thin aluminium. The hole in the centre is 1/16 x 1/8 inch, and the movement of the armature is limited to about 3/32 inch. In all arrangements of this kind there is a tendency for the armature spring to vibrate, as it were, sinusoidally, if the coil is magnetised and demagnetised at a higher rate than the natural period of vibration of the spring. This causes an irregularity in the rate of the vibrations which affects the received image very considerably. A photographic film is wrapped round the drum of the machine, being fastened by means of a little celluloid cement smeared along one edge.
This device, although it will work well over artificial conductors, is not suitable for wireless work, as it is too coarse in its action; it can be made sensitive enough to work at a speed of 1000 to 1500 contacts per minute, with a current of .5 milliampere. It is impossible to obtain a current of this magnitude from the majority of the detectors in use, so that if any attempt is made to use this device for radio-photography it will be necessary to employ a Marconi coherer , as this is practically the only coherer from which so large a current can be obtained.
A method whereby a filings coherer can be decohered, the act of decohering closing a local circuit which contains the photographic receiving apparatus, is given in the diagram Fig. 21.
In the figure, the coherer C is fixed in rigid supports, one support being provided with a platinum pin F. To the coherer is connected the sensitive electro-magnet M, which becomes magnetised as soon as the incoming waves act upon the coherer. To the armature B is attached a light aluminium arm S, pivoted at K, and carrying at the other end the striker G, which is fitted with a platinum contact. When the armature B is attracted the coherer is decohered by the force of the impact between the contacts F and G. To prevent damage to the coherer the force of the blow is taken off by the ability of the striker to work back through a hole in the arm S, the spring N keeping it normally in a fixed position. T and P are adjusting screws, and the terminals J are for connecting to the receiving apparatus. With this arrangement a very short wave-train causes only one tap of the contacts, so that only one mark is registered on the receiving drum for every contact made on the transmitter.
The drawing, Fig. 22, gives a diagrammatic representation of apparatus arranged for another photographic method of receiving. The machine shown in Fig. 6 is used in this case. A is the aerial, E earth, P primary of oscillation-transformer, S secondary of transformer, C variable condenser, C' block condenser, D detector, X two-way switch, T telephone.
A De' Arsonval galvanometer H is also connected to the switch X, so that either the telephone or the galvanometer can be switched in. The galvanometer can be made sensitive enough to work with a current as small as 10^ of an ampere, with a period of about 1/150th of a second. The screen J has a small hole about 1/8 inch diameter drilled in the centre. Under the influence of the brief currents which pass through the detector every time a group of waves is received, the mirror of the galvanometer swings to-and-fro in front of the screen J, and allows the light reflected from the source of light M to pass through the aperture in the screen, on to the lens N.
Round the drum V of the machine is wrapped a sensitive photographic film, and this records the movements of the mirror which correspond to the contacts on the half-tone print used in transmitting. Every time current passes through the galvanometer, the light that is received from M, passes through the aperture in the screen J, and is focussed by the lens N to a point upon the revolving film. As soon as the current ceases, the mirror swings back to its original position, and the film is again in darkness. Upon being developed a photograph, similar to the negative used for preparing the metal print is obtained. If desired the apparatus can be so arranged that the received picture is a positive instead of a negative.
The detector used should be a Lodge wheel-coherer or a Marconi valve-receiver, as these are the only detectors that can be used with a recording instrument. If the swing of the galvanometer mirror is too great, a small battery with a regulating resistance can be inserted in order to limit the movement of the mirror to a very short range; the current of course flowing in an opposite direction to the current flowing through the coherer.
In this, as in all other methods of receiving, the results obtained depend upon the fineness of the line screen used in preparing the metal prints; and as already shown the fineness of the screen that can be used is dependent upon the mechanical efficiency of the entire apparatus.
Another system, and one that has been tried as a possible means of recording wireless messages, is as follows. The wireless arrangements consist of apparatus similar to that shown in Fig. 22, but instead of a Lodge coherer a Marconi valve is used, and an Einthoven galvanometer is substituted for the reflecting galvanometer. The Einthoven galvanometer consists of a very powerful electro-magnet, the pole pieces of which converge almost to points. A very fine silvered quartz thread is stretched between the pole pieces, as shown in Fig. 23, the tension being adjustable. The period of swing is about 1/250th of a second. A hole is bored through the poles, and one of them is fitted with a sliding tube which carries a short focus lens N. The light from M passes through the magnets, and a magnified image of the quartz thread is thrown upon the ebonite screen J. This screen is provided with a fine slit, and when the galvanometer is at rest the shadow of the thread just covers the slit in the screen and prevents any light from M reaching the photographic film. Upon signals being received the shadow of the thread moves to one side for a long or short period, uncovering the slit, and allowing light to pass through. The lens R concentrates the collected light to a point upon the revolving film. The connections for the complete receiver are given in Fig. 24.
The modified form of the Einthoven galvanometer, as arranged by Professor Korn for use with his selenium machines for photo-telegraphy over ordinary land lines, consists of two fine silver wires which are displaced in a lateral direction between the pole pieces when traversed by a current; the current passing through both wires in the same direction. A small shutter of aluminium foil is attached to the wires at the optical centre. The silver wires used are 1/1000 inch in diameter, with a natural period of about 1/120th of a second; the length of wires free to swing being usually about 5 cm.
With the apparatus arranged by the Poulsen Company, given in the diagram, Fig. 17, for photographically recording wireless signals, the current required to operate the galvanometer for signals transmitted at the rate of 1500 a minute is 1 x 10^ ampere, while for signals up to 2500 a minute a current about 5 x 10^ ampere is necessary.
Another very sensitive instrument, employed by M. Belin, and known as Blondel's oscillograph, consists of two fine wires stretched between the poles of a powerful electro-magnet, a small and very light mirror being attached to the centre of the wires. The current passes down one wire and up the other, and the wires, together with the mirror, are twisted to a degree depending upon the strength of the received current. In order to render the instrument dead-beat the moving parts are arranged to work in oil. The light reflected from the mirror is made use of in a manner similar to that shown in Fig. 22.
In all photographic methods of receiving, the apparatus must be enclosed in some way to prevent any extraneous light from reaching the film, or better still placed in a room lighted only by means of a ruby light.
The following method is given more as a suggestion than anything else, as I do not think it has been tried for wireless receiving, although it is stated to have given some good results over ordinary land lines. It is the invention of Charbonelle, a French engineer, and is quite an original idea. His method consists of placing a sheet of carbon paper between two sheets of thin white paper, and wrapping the whole tightly round the drum of the machine. A hardened steel point is fastened to the diaphragm of a telephone receiver, and this receiver is placed so that the steel point presses against the sheets of paper. As the diaphragm and steel point vibrates under the influence of the received currents marks are made by the carbon sheet on the bottom paper.
The telephone relay consists of a microphone C, Fig. 25, formed of the two pieces of osmium iridium alloy. The contact is separated to a minute degree partly by the action of the local current from F, which flows through it and also through the winding W of the two magnet coils. The local current from F assists in forming the microphone by rendering the space between the contacts conductive. The vibrating reed P is fastened to the metal frame which carries a micrometer screw by which the distance between the contacts can be accurately regulated. It will be seen from Fig. 25 that the local circuit consists of a battery F , the microphone contacts C, the windings W, milliampere meter B, and the terminals T, for connecting to the galvanometer or telephone, all in series. On the top of the magnet cores N, S is a smaller magnet D, wound with fine wire for a resistance of about 4935 ohms, the free ends of the coils being connected to the detector terminals. The working is as follows. Supposing the current from the detector flows through D in such a way that its magnetism is increased, the reed P will be attracted, the contacts opened, and their resistance increased. It will be seen that the current from F is passed through the coils W, in such a way as to increase the magnetism of the permanent magnet, so that any opening of the microphone contact increases their resistance, causes the current to fall, and weakens the magnets to such an extent that the reed P can spring back to its normal position. On the other hand, if the detector current flows through D in such a direction as to decrease the magnetism in the permanent magnets, the reed P will rise and make better contact owing to the removal of the force opposing the stiffness of the reed. Owing to the decrease in the resistance of the microphone, the strength of the local current will be increased, the magnets strengthened, and the reed P will be pulled back to its original position. This relay gives a greatly magnified current when properly adjusted, the current being easily increased from 10^ to 10^ amperes. It is also very sensitive, but needs careful adjustment in order that the best results may be obtained. A greater range of magnification can be obtained by placing two or more relays in series.
A very sensitive receiver designed by the writer is given in the figures 26 and 27. To the centre of a telephone diaphragm is fastened a light steel point P, and the movement of this point is communicated to the aluminium arm D, which is pivoted at C. As will be seen the telephone receiver is of special construction, it containing only one coil and therefore only one core; by this means the movement of the diaphragm is centralised. The coil is wound for a resistance of about 200 ohms, and the diaphragm should be fairly thin but very resillient.
To the free end of D is fastened the mirror T, made from thin diaphragm glass about 1-1/2 centimetres diameter, and having a focal length of 40 inches. Light from the lamp L is transmitted by the lens N in a parallel beam to the mirror which concentrates it to a point upon a hole 1/100th of an inch in diameter in the screen J. As the telephone diaphragm vibrates under the influence of the received signals the arm, and consequently the mirror, vibrates also, and the hole in the screen J is constantly being covered and uncovered by the spot of light. It will be seen from Fig. 27 that the ratio between the centre of the mirror and the pivot C, and C and the steel point P is 10:1, so that if a movement of 1/20000th of an inch is obtained at the centre of the diaphragm the mirror will move 1/2000th of an inch; and as the focal length of the mirror is 40 inches a movement of 1/50th inch is given to the spot of light.
This receiver is capable of working at a fairly high speed, as the inertia of the moving parts is practically negligible; the weight of the arm and mirror being less than 20 grains. The hole in the screen is made slightly less in diameter than the traverse of the revolving cylinder, the slight distance between the cylinder and the screen allowing the light to disperse sufficiently to produce a line on the film of about the right thickness.
The second method is rather more complicated, and is based upon the fact that the kathode rays in a Crookes' tube can be deflected from their course by means of a magnet. In Fig. 29 the kathode K of the X-ray tube sends a kathode ray discharge through an aperture in the anode A, through a small aperture in the ebonite screen J on to the drum V of the machine, round which is wrapped a photographic film; A and K being connected to suitable electrical apparatus. Upon the coil M being energised, the kathode-ray is deflected from its straight-line course, and the drum V is left in darkness.
The method which is now going to be described is very ingenious, as it makes use of what is known as an electrolytic receiver. This method of receiving has proved to be the most practical and simple of all the photo-telegraphic systems that have been devised.
The application of this system to wireless reception is as follows. The aerial A, and the earth E, are joined to the primary P of a transformer, the secondary S being connected to a Marconi valve receiver C. The valve receiver is connected to the battery B and silvered quartz thread K of an Einthoven galvanometer . The thread is 1/12000th of an inch in diameter, and will respond to currents as small as 10^ of an ampere. The light from M throws an enlarged shadow of the thread over a slit in the screen J, and as the thread moves to one side under the influence of a current, the slit in J is uncovered, and the light from M is thrown upon a small selenium cell R. In the dark the selenium cell has a very high resistance, and therefore no current can flow from the battery D to the relay F. When the string of the galvanometer moves to one side and uncovers the slit in the screen J, a certain amount of light is thrown upon the selenium cell lowering its resistance, allowing sufficient current to pass through to operate the relay.
Round the drum of the machine is wrapped a sheet of paper that has been soaked in certain chemicals that are decomposed on the passage of an electric current through them. As soon as the local circuit of the relay is closed, the current from the battery Z flows through the paper and produces a coloured mark. The picture, therefore, is composed of long or short marks which correspond to the varying strips of conducting material on the single line print. In order to render the marks short and crisp, a small battery Y, and regulating resistance L, is placed across the drum and stylus. The diagram, Fig. 30, gives the connections for the complete receiver.
The paper used is soaked in a solution consisting of
Ferrocyanide of potassium 1/4 oz. Ammoniac Nitrate 1/2 oz. Distilled water 4 oz.
The paper has to be very carefully chosen, as besides being absorbent enough to remain moist during the whole of the receiving, the surface must also remain fairly smooth, as with a rough paper the grain shows very distinctly, and if there is an excess of solution the electrolytic marks are inclined to spread and so cause a blurred image. The writer tried numerous specimens of paper before one could be found that gave really satisfactory results. It was also found that when working in a warm room the paper became nearly dry before the receiving was finished, and the resistance of the paper being greatly increased , the marking became very faint. A sponge moistened with the solution and applied to the undecomposed portion of the paper, while still revolving, was found to help matters considerably.
Another experience which happened during the writer's early experiments, the cause of which I am still unable to explain, occurred in connection with the stylus. The stylus used consisted of a sharply pointed steel needle, and after working for about three minutes it was noticed that the lines were becoming gradually wider, finally running into each other. Upon examination it was found that the point of the needle had worn away considerably, becoming in fact, almost a chisel point. Almost every needle tried acted in a similar manner, and to overcome this difficulty the stylus shown in Fig. 31 was devised.
It will be seen that it consists of a holder A, somewhat resembling a drill chuck, fastened to the flat spring B in such a manner that the angle the stylus makes to the drum can be altered. The needle consists of a length of 36-gauge steel wire, and as this wears away slowly the jaws of the holder can be loosened and a fresh length pushed through. The wire should not project beyond the face of the holder more than 1/8th inch. The gauge of wire chosen would not suit every machine, the best gauge to use being found by trial, but in the writer's machine the pitch of the decomposition marks is much finer than of those made by the commercial machines, and this gauge, with the slight but unavoidable spreading of the marks, will produce a mark of just the right thickness. As already mentioned, no explanation of this peculiarity on the part of the stylus can be given, as there is nothing very corrosive in the solution used, and the pressure of the stylus upon the paper is so slight as to be almost negligible.
No special means are required for fastening the paper to the drum, the moist paper adhering quite firmly. Care should be taken, however, to fasten the paper--which should be long enough to allow for a lap of about 1/4 inch--in such a manner that when working the stylus draws away from the edge of the lap and not towards it.
The chemical action that takes place is therefore very small, as the intermittent current sent out from the transmitter in some cases only lasts from 1/50th to 1/100th a second.
The decomposed marks on the paper are blue, and, as photographers know, blue is reproduced in a photograph as a white, so that a photograph taken of our electrolytic picture, which will of course be a blue image upon a white ground, will be reproduced almost like a blank sheet of paper. If, however, a yellow contrast filter is placed in front of the camera lens, and an orthochromatic plate used, the blue will be reproduced in the photograph as a dead black.
There is one other point that requires attention. It will be noticed that the metal print used for transmitting is a positive, since it is prepared from a negative. The received picture will therefore be a negative, making the final reproduction, if it is to be used for newspaper work, a negative also. Obviously this is no good. The final reproduction must be a positive, therefore the received picture must be also a positive. To overcome this difficulty matters must be so arranged at the receiving station that in the cases of Figs. 17, 18, 22, and 24, the film is kept permanently illuminated while the stylus on the transmitter is tracing over an insulating strip, and in darkness when tracing over a conducting strip. In Fig. 30 the relay F should allow a continuous current from Z to flow through the electrolytic paper, and only broken when the resistance of the selenium cell is sufficiently reduced to allow the current from D to operate the relay.
The author has endeavoured to make direct positives on glass of the picture to be transmitted, so that a negative metal print could be prepared. The results obtained were not very satisfactory, but the method tried is given, as it may perhaps be of interest. The plate used in the camera has to be exposed three or four times longer than is required for an ordinary negative. The exposed plate is then placed in a solution of protoxalate of iron and left until the image shows plainly through the back of the plate. It is then washed in water and placed in a solution consisting of
Distilled water 1000 cc. Nitric acid 2 cc. Sulphuric acid 3 cc. Bichromate of potash 105 grammes. Alum 80 "
After being in this bath for about fifteen minutes the plate is again well washed in water, and developed in the ordinary way. The first two operations should be performed in the dark room, but the remaining operations can be performed in daylight, once the plate has been placed in the bichromate bath. As already stated, the results obtained were not very satisfactory, and such a method is not now worth following up, as it is comparatively easy so to arrange matters at the receiving station that a positive or negative image can be received at will.
It is necessary to connect the stylus of the receiving machine to the positive pole of the battery Z, otherwise the marks will be made on the underside of the paper. The electrolytic receiver, owing to the absence of mechanical and electro-magnetic inertia, is capable of recording signals at a very high speed indeed.
SYNCHRONISING AND DRIVING
Clockwork and electro-motors are the source of driving power that are most suitable for photo-telegraphic work, and each has its superior claims depending on the type of machine that is being used. For general experimental work, however, an electro-motor is perhaps the most convenient, as the speed can be regulated within very wide limits. For a constant and accurate drive a falling weight has no equal, but the
Add to tbrJar First Page Next Page Prev Page