bell notificationshomepageloginedit profileclubsdmBox

Read Ebook: Secrets of Earth and Sea by Lankester E Ray Edwin Ray Sir

More about this book

Font size:

Background color:

Text color:

Add to tbrJar First Page Next Page Prev Page

Ebook has 481 lines and 73835 words, and 10 pages

FOOTNOTES:

"L'Age du Renne," a posthumous work, with one hundred coloured quarto plates of objects in the Piette collection, is published by Masson, of Paris, and gives the complete list of Piette's numerous earlier papers, issued as his excavations proceeded.

Seven years ago the ape-like lower jaw and thick walled brain-case called "Eoanthropus" were discovered in a sparse gravel near Lewes in Sussex. It is probably of older date than either the Neander men or the Heidelberg men. See on this subject the chapters on "The Missing Link" in my "Diversions of a Naturalist" and those on "The Most Ancient Men" and "The Cave-men's Skulls" in "Science from an Easy Chair. First Series" .

PORTRAITS OF MAMMOTHS BY MEN WHO SAW THEM

Some fifty-five years ago pieces of reindeer's antler were discovered in the cave known as "La Madeleine" in the Dordogne , upon which were engraved the outlines of various animals such as reindeer and horses. They and the bone spear-heads and needles, and the flint knives found with them, were the first revelation to later man of the existence of the prehistoric cave-men. Among the carvings was a piece of ivory which excited the profoundest interest. Partly hidden by a confused mass of scratches it showed the well-drawn outline of the great extinct elephant, thus scratched or "engraved" on a bit of its own tusk . The engraving was barely 5 in. long, and has been reproduced in many books. The specimen is now in Paris, and was for long the only known representation of the Mammoth by the ancient men who lived with it in Western Europe.

During the last fifteen years, however, our knowledge of the works of art executed by these ancient men has increased to an extraordinary extent, chiefly owing to the energy and skill of the French explorers of the caverns in the south central region of that country. As long ago as 1879 a little girl, the daughter of Se?or Sautuolo-a proud woman she should be if alive to-day-when visiting the cavern of Altamira, near Santander, in the north of Spain, with her father, drew his attention to a number of "pictures of animals," painted on the rocky vault or roof of the cave. At first no one believed that these pictures were more than a few hundred years old, whilst some held them to be modern and made with fraudulent purpose. In 1887 Piette, the distinguished French investigator of the remains of human work in the caverns of the French Pyr?n?es , declared that in his opinion the pictures of the Altamira cave were of the same age as the bone and ivory carvings of the Madeleine cave-that is to say, dated from what "prehistorians" call the later Palaeolithic age, an age when the mammoth, the bison, the cave lion, and the reindeer still existed in Western Europe, and when the British Isles were not yet separated by sea from the Continent. The age indicated is probably from 25,000 to 50,000 years ago. Still, the opinion prevailed that the "wall-drawings" and "roof-drawing" of the Altamira cave were either mediaeval or modern until the French explorers discovered wall-paintings in some of the caves of the Dordogne. Then they proceeded to a careful investigation of the Altamira cave, and discovered conclusive evidence of the great age of the paintings by the removal of some of the undisturbed deposit in the cave, in which were found flint implements and small engravings on bone, proving the deposit to be of the late Palaeolithic age. When this deposit was removed, pictures of animals, partly engraved and partly completed in colour , were found on the wall of the cave previously covered up by the deposit. M. Cartailhac, who had been a leading opponent of the view that the Altamira wall-pictures were very ancient, now renounced his former position and became an enthusiastic investigator and exponent of these pictures. M. Breuil, who had discovered wall-pictures, including those of the mammoth, in French caves, and had been met by disbelief and even suspicion, now received due recognition, and joined Cartailhac in preparing a complete account of the wall and roof pictures of the Altamira cave. The Prince of Monaco, who had carried out, with the aid of French experts, an investigation of the caves on his property at Mentone, on the Mediterranean "Riviera," undertook the expense of producing a splendid volume, giving coloured reproductions of the Altamira pictures. To him the world is indebted, not only for most important discoveries of human skeletons and objects of human workmanship in the caves of Mentone , but for the publication in illustrated form of the Mentone discoveries and of those obtained in the Altamira cave. He has not rested at this stage of accomplishment, but has produced at his own expense large volumes by MM. Breuil, Capitan, and Peyrony, illustrating and describing the discoveries made by them of wall-paintings and engravings of animals in the cave known as the "Font de Gaume," in the Dordogne. The Prince has also published a volume, by MM. Breuil, de Rio, and Sierra, reproducing the drawings found in a whole series of caves and rock-shelters in various parts of the Spanish peninsula, where the rock-painting race seems to have persisted to a somewhat later period and to have painted, more frequently, pictures of human beings as well as of animals. These, whilst less artistic and truthful than those of the North Spanish and South French area, yet have surpassing interest, since they have special similarity to ancient rock-paintings found in North Africa and to the rock-paintings of the Bushmen of South Africa.

The Prince of Monaco has finally established the great study in which he has played so valuable a part by founding in Paris an "Institute of Human Palaeontology"; that is, "of the study of prehistoric man," which he has endowed with a magnificent building, comprising laboratories and residences for professors, together with funds to pay for its maintenance and the proper publication of results. This he has done in addition to founding entirely at his own expense a similarly complete Institute for the study of "oceanography"-the study of the living contents and history of the great seas.

There are five kinds of artistic work of Palaeolithic age found in the caverns of France and Spain; namely small solid carvings in bone, ivory, or stone; small engravings in sunk outline on similar material, rarely with relief of the outlined figure; large stone statues, 2 ft. to 6 ft. across, in high relief, with complete modelling of the visible surface; rock engravings and paintings on the walls and roofs of caverns or rock shelters, often partly outlined by engraving and scraping of the surface, and then completed in black or red paint or in several colours ; they are of large size, from 2 to 5 ft. in cross measurement; models in clay, one side only shown, the other resting on rock; a few incomplete clay models of this nature representing the bison of about 2 ft. in length, have recently been discovered in one of the French caverns, and are the only examples of modelling in clay by the Palaeolithic men yet discovered.

Our figures of the mammoth are all of the fourth class-namely, rock-paintings in one colour partly engraved and scraped. The originals are from 1 1/2 ft. to 2 1/2 ft. long. The mammoths given in Fig. 8 are carefully copied from engravings discovered, reproduced, and described by M. Breuil and his fellow-workers. They are on the walls of the cavern known as the "Font de Gaume," in the commune of Tayac in the Dordogne. Those copied in Fig. 9 and Fig. 10, A, were discovered on the walls of the cave of Les Combarelles in the same district.

Fig. 10, B, is from a cave at Bernifal, near les Eyzies, in the Dordogne, and shows a mammoth enclosed in a triangular design, which is believed to represent a trap, or else a cage. Such triangular figures with upright and also bent supports are found in various degrees of elaboration on both small and large engravings of this period, and are generally accepted as representing huts or enclosures supported by wooden poles. They are called "tectiforms" by the French explorers.

The bones and teeth of the mammoth are very common in the river gravels and clays of Western Europe and England, and a complete skull, with its tusks, dug up at Ilford, in the east of London, is in the Natural History Museum. Frozen carcasses of this animal are found in Northern Siberia, and two showing much of the skin and hair are in the museum of Petrograd. There is no tradition or knowledge of the mammoth among living races of men. The natives of Siberia, who have from time immemorial done a large trade in the ivory, regard the tusks as "horns," and have stories about the ghosts of the mammoth, but no tradition of it as a living beast. The mammoth was closer to the Indian elephant of to-day than to the African one. It had, as these drawings show, a pelt of long hair. Indian elephants from upland regions often have a good deal of hair all over the body: and the newborn young of both the Indian and African elephant has a complete coat of hair. The drawings here reproduced are not only of thrilling interest because they are the work of remotely ancient men who lived with and observed mammoths in the south of France, but also because they show an extraordinary skill in "sketching"-in giving the essential lines of the creature portrayed and in reproducing the artist's "impression." These artists were "impressionists"-the earliest and most sincere-without self-consciousness or other purpose than that of making line and colour truly register and indicate their vivid impressions. It is interesting to note that actual error in drawing sometimes accompanies the most penetrating observation and skilful delineation of the characteristic form and pose of the animal. Probably mammoths were getting rare in the south of France when these drawings were made, and were not so familiar in all their details to the artist as were bison, horse, and deer.

THE ART OF PREHISTORIC MEN

The works of art produced by the cave-men are, as we have already seen, of five kinds or classes- All-round small statuettes, or "high-relief" carvings, in ivory, bone, or stone ; small engravings on bits of ivory, deer's antler, bone, or stone ; large statues, hewn in rock, and left in place; drawings of large size-two to five feet in diameter on the rocky walls and vaults of limestone caverns ; models worked in clay. I give reproductions in the present chapter of several samples of this art, showing how skilfully these men of 50,000 years ago could portray a variety of animals.

Who were these men, and why did they make these remarkable carvings and drawings? First, as to their age. We now know of a long succession of human inhabitants of this part of the world, namely, Western Europe. The earliest reach back to an antiquity never dreamed of fifty years ago. We cannot fix with any certainty the number of thousands, or hundreds of thousands, of years which is represented by this succession, but we can place the different periods in order, one later than the other, each distinguished chiefly by the character of the workmanship belonging to it, though in a few instances we have also the actual limb-bones, skulls, and jaw-bones of the men themselves, which differ in different periods. It is practically certain that these prehistoric successive periods of humanity do not represent the steps of growth and change of one single race belonging to this part of the world, but that successive races have arrived on the scene of Western Europe from other parts, and it is usually very difficult even to guess where they came from and where they went to!

It is convenient to divide the human epoch, the time which has elapsed since man definitely took shape as man-characterized by his large brain, small teeth, upright carriage, and large opposable thumb and still larger and more peculiar non-opposable great toe-into the historic and the prehistoric sections. In this part of the world the first use of metals , as the material for the fabrication of implements and tools of all kinds, occurs just on the line between the historic and the prehistoric sections; that is to say, between those times of which we know something by tradition and writing, and those earlier times of which we have no record and no tradition, but concerning which we have to make out what we can by searching the refuse heaps and ruins of man's dwelling-places and carefully collecting such of his "works" as have not utterly perished, whilst noting which lie deeper in the ground, which above and which below the others.

Practically the men of the prehistoric ages in Europe had not the use of metals . The prehistoric peoples are spoken of as the men of the Stone Age, because they used stone, chiefly flint, as many savage races do to-day, as the material from which they fabricated by means of deftly struck blows all sorts of implements. Undoubtedly they also, by aid of stone knives, saws and planes, made weapons and other implements of wood and of the horns, bones, and teeth of animals. But these latter substances are perishable, and have only been preserved from decay under special circumstances, such as their inclusion in the deposits on the floors of caverns.

The Stone Age is itself readily and obviously divisible into two periods. The latter is a comparatively very short and recent period, when great skill in chipping flints and other stones was attained, and the implements so shaped were often rubbed on large stones of very hard material , so as to polish their surfaces. This is the "Neolithic," or later Stone, period, and extends back in Europe certainly to 7000 B.C., and probably a few thousand years further. Passing further back than this, we leave what are called "recent" deposits, and come to those associated with great changes of the earth's surface. We enter upon "geological" time, and vastly changed climatic and geographical conditions. We are in the older Stone period, called the "Palaeolithic period." It is not really comparable to the "Neolithic," since it comprises many successive ages of man, and, although called the "Palaeolithic" or "ancient Stone" period, has no unity, but, whilst readily divisible into several sub-periods or epochs of comparatively late date, stretches back into immense geologic antiquity indicated by flint implements of special and diverse types, which are found in definitely ascertained geologic horizons.

The Pleistocene series or "system" of strata-also called the "Quaternary" to mark its distinction from the underlying long series of "Tertiary" strata-does not comprise the actual surface-deposits in which the remains of Neolithic man are found. It is usual, though perhaps not altogether logical, to separate these as "Recent" and to begin the long enumeration of "geologic" strata after a certain interval when the relative levels of land and sea and the depth of river-valleys were not precisely what they are to-day, and the human inhabitants of Western Europe were hunters using rough unpolished flint implements-in fact, when the "Palaeolithic" period of human culture had not given place to the "Neolithic," which was after some ten thousand years itself to be superseded by the age of metals. "Prehistorians," the students of prehistoric man-divide the Pleistocene series of deposits with a view to a systematic conception of the successive changes of man and his surroundings during the period occupied by their deposition, into an upper, a middle and a lower group-and further have distinguished certain successive "horizons" in these groups-characterized by the remains of man and animals which they contain. They are exhibited in the tabular statement here given in the ascertained order of their succession, and are represented in the southern part of Britain as well as in France.

HORIZONS OR EPOCHS OF THE PLEISTOCENE OR QUATERNARY SYSTEM

The amount of the sedimentary deposits of the earth's crust belonging to the Pleistocene or Quaternary Period-about 250 feet in thickness-is exceedingly small, and represents a surprisingly short space of time as compared with that indicated by the vast thickness of underlying deposits. It has nevertheless been possible to study and classify the "horizons" of this latest very short period minutely because the deposits are easily excavated, and having been more recently "laid down" have not suffered so much subsequent breaking up and destruction as have the older strata; and further, because they embed at certain levels and in favourable situations an abundance of well-preserved bones and teeth of animals and the implements and carvings in stone and bone made by man. It is worth while to look at this matter a little more exactly.

The total thickness of sedimentary deposits-that is, deposit laid down by the action of water on the earth's surface, and now estimated by the measurement of strata lying one over the other in various parts of the globe-tilted and exposed to view so that we can trace out their order of super-position-is about 130,000 feet. The lower half of this huge deposit contains no fossilized remains of the living things which were present in the waters which laid it down; they were soft, probably shell-less and boneless, and so no fossilized trace of them is preserved. Thus we divide the sedimentary crust into 65,000 feet of "archaic" non-fossiliferous deposit, and an overlying 65,000 feet of fossil-containing deposits.

The earliest remains of living things known are not very different from marine creatures of to-day; they are the strange shrimp-like Trilobites and the Lingula-shells found in the lower Cambrian rocks of Wales. Over them lie 65,000 feet of sedimentary deposit teaming with fossils-the petrified remains of animals and plants. The Trilobites and the Lingulas must have had a long series of ancestors leading up to them from the simplest beginnings of life-for they are highly organized creatures. But no trace of those ancestors is preserved in the 65,000 feet of sedimentary rock underlying the earliest fossils.

When we are concerned with written history, ancient Egypt seems to be of vast and almost appalling antiquity; on the other hand, if we study the cave-men, ancient Egypt becomes relatively modern, and the first cold period and extension of glaciers, which 500,000 years ago marked the passage from Pliocene to Pleistocene, becomes our familiar example of something belonging to the remote past-beyond or below which we rarely let our thoughts wander. That is a natural result of concentration on a special study. But it has had the curious result, in many cases, of making students of ancient man unwilling to admit the discovery of evidences of the existence of man at an earlier date than that which belongs to the deposits and remains to which their life-long studies have been confined and upon which their thought is concentrated. The last 500,000 years of the earth's vicissitudes, which resulted in the 250 feet of "Pleistocene" deposit and the marvellous treasures of early humanity embedded in them, form but a trivial postscript to the great geological record which precedes it.

No estimate can be made of the time represented by the 65,000 feet of fossiliferous strata known to us and the same thickness of non-fossiliferous deposit which precedes them. There are no facts known upon which a calculation of the related lapse of time can be based. But most geologists would agree that whilst we have good ground for assigning half a million years to the formation of the Pleistocene strata, it is not an unreasonable supposition that the period required for the formation of the fossiliferous rocks which precede them in time, is not less and probably more than five hundred million years.

The horses shown are from various caves. Fig. 12 is drawn in black on the wall of a cave at Niaux , and Fig. 11 is a similar drawing from a cave in the Haute Garonne. Both are remarkable for the exact representation of natural poses of the horse. Figs. 13, A and B, are also from the walls of caves. The latter is remarkable for the large head, short mane, and thick muzzle, which closely correspond with the same parts in the existing wild horse of the Gobi desert in Tartary . The horse drawn in Fig. 11 seems to belong to a distinct race, suggesting the Southern "Arab" horse rather than the heavier and more clumsy horse of the Gobi desert. Fig. 13, C, is engraved of the size here given, on a piece of reindeer's antler. It is remarkable for the halter-like ring around the muzzle. A similar cord or rope is seen in Fig. 12 and in Fig. 13, A.

In Fig. 20 we have a wonderful outline of a bear engraved on a piece of stone, from the cave of Teyjat, in the Dordogne; Fig. 22, the head of a wolf on the wall of the cave of Combarelles, Dordogne; Fig. 23, lion , engraved on the wall of the same cave; Fig. 21, small bear, engraved on a pebble; Fig. 24, a duck engraved on a piece of reindeer's antler ; Fig. 17, the square-mouthed, two-horned rhinoceros, drawn in red outline on the wall of the cavern of the Font de Gaume. This drawing is 2 1/2 ft. long. In successful characterization the bear , the wolf , and the feline far surpass any of the attempts at animal drawing made by modern savages, such as the Bushmen of South Africa, Californian Indians, and Australian black fellows.

Fig. 27 is an outline sketch of a rock-carved statue, 18 in. high, proved by the kind of flint implements found with it to be of Aurignacian age. It was discovered on a rubble-covered face of a rock-cliff at Laussel, in the Dordogne, by M. Lalanne. The woman holds a bovine horn in her right hand. The face is obliterated by "weathering." Four other human statues were found in the same place, one a male, much broken, but obviously standing in the position taken by a man throwing a spear or drawing a bow. Near these were found a frieze of life-sized horses carved in high relief on the rock. These are the only statues of any size, executed by the Reindeer men, yet discovered.

The representations of men are rare among these earliest works of art, and less successfully carried out than those of animals. But several small statuettes of women in bone, ivory, and stone of the early Aurignacian horizon are known. They suggest, by their form of body, affinity with the Bushmen race of to-day . The all-round carving of a female head also suggests Ethiopian affinities in the dressing of the hair. Some regard this hair-like head-dress as a cap. Here and there badly executed outline engravings of men, some apparently wearing masks, have been discovered.

The fact that the "Reindeer men" were skilful in devising decorative design-not representing actual natural objects-is shown by the carving drawn in Fig. 29 and in many others like it.

The later horizons of the Reindeer period or Upper Pleistocene yield some beautiful outline engravings of red deer and reindeer on antler-bone, as well as of other animals. One celebrated carving I have described in the first chapter of this book. It is now regarded as probable that whilst the art of the Aurignacians persisted and developed in the South of France and North-West of Spain until and during the time of the Magdalenian horizon, yet a distinct race, with a different style of art, spread through South-East Spain and also from Italy into that region, and affected injuriously the "naturalistic" Aurignacian art, and superseded it in Azilian and Neolithic times. We find late drawings in some of the east Spanish caves of a very much simplified character, small human figures armed with bow and arrow, and others reduced to geometric or mere symbolic lines derived from human and animal form . The latest studies of Breuil on this subject tend to throw light by aid of these simplified inartistic and symbolic drawings on the migrations of very early races in the south and south-east of Europe, and to connect them perhaps with North African contemporary races. The subject is as difficult as it is fascinating. Those who wish to get to the original sources of information should consult the last ten years' issues of the invaluable French periodical called "L'Anthropologie," edited by Professor Marcelin Boule.

FOOTNOTE:

M. Reinach relates that two of these statues were in 1912 deliberately stolen by the German Verworn professor of Physiology in Bonn, who repaid the hospitality of M. Lalanne by bribing his workman and secretly carrying off these valuable specimens to Germany, where they were sold to the museum of Berlin for a large sum.

VESUVIUS IN ERUPTION

At intervals of ten to twenty years the best-known volcano in the world-Vesuvius, on the Bay of Naples-has in the last two centuries burst into eruption, and the probability of the recurrence of this violent state of activity, at no distant date, render some account of my own acquaintance with that great and wonderful thing seasonable. We inhabitants of the West of Europe have little personal experience of earthquakes, and still less of volcanoes, for there is not in the British Islands even an "extinct" volcanic cone to remind us of the terrible forces held down beneath our feet by the crust of the earth. In regions as near as the Auvergne of Central France and the Eiffel, close to the junction of the Moselle with the Rhine, there are complete volcanic craters whose fiery origin is recognized even by the local peasantry. They are, however, regarded by these optimist folk as the products of ancient fires long since burnt out. The natives have as little apprehension of a renewed activity of their volcanoes as we have of the outburst of molten lava and devastating clouds of ashes and poisonous vapour from the top of Primrose Hill. Nevertheless, the hot springs and gas issuing from fissures in the Auvergne show that the subterranean fires are not yet closed down, and may at any day burst again into violent activity.

Such also was the happy indifference with which from time immemorial the Greek colonists and other earlier and later inhabitants of the rich and beautiful shores of the Neapolitan bay before the fateful year A.D. 79, had regarded the low crater-topped mountain called Vesuvius or Vesbius, as well as the great circular forest-grown or lake-holding cups near Cumae and the Cape Misenum, at the northern end of the bay-known to-day as the Solfatara, Astroni, Monti Grillo, Barbaro, and Cigliano-and the lakes Lucrino, Averno, and Agnano. These together with the Monte Nuovo-which suddenly rose from the sea near Baiae in 1538 and as suddenly disappeared-constitute "the Phlegraean fields." Vesuvius was loftier than any one of the Phlegraean craters, and the gentle slope by which it rose from the sea level to a height of nearly 3700 ft. had, as now, a circumference of ten miles. It did not terminate in a "cone," as in later ages, but in a depressed, circular, forest-covered area measuring a mile across, which was the ancient crater. A drawing showing the shape of the mountain at this period is the work of the late Prof. Phillips of Oxford . The soil formed around and upon the ancient lava-streams of Vesuvius appears to have been always especially fertile, so that flourishing towns and villages occupied its slopes, and the ports of Herculaneum, Pompeii, and Stabiae were the seats of a busy and long-established population. The existence of active volcanoes at no great distance from Vesuvius was, however, well known to the ancient Greeks and Romans. The great Sicilian mountain, Etna-more than 10,000 ft. in height, rising from a base of ninety miles in circumference-and the Lipari Islands, such as Stromboli and Volcano, were for many centuries in intermittent activity before the first recorded eruption of Vesuvius-that of A.D. 79-and great eruptions are recorded as having occurred in the mountain mass of the island of Ischia, close to the Bay of Naples, in the fifth, third, and first centuries B.C.

Nevertheless, the outburst of Vesuvius in A.D. 79 and its re-entrance into a state of activity came upon the unfortunate population around it as an absolutely unexpected thing. At least a thousand years-probably several thousand years-had passed since Vesuvius had become "extinct." All tradition of its prehistoric activity had disappeared, though the learned Greek traveller Strabo had pointed out the indications it presented of having been once a seat of consuming fire. From A.D. 63 there were during sixteen years frequent earthquakes in its neighbourhood, which, as we know by records and inscriptions, caused serious damage to the towns around it, and then suddenly, on the night of Aug. 24, A.D. 79, vast explosions burst from its summit. A huge black cloud of fine dust and cinders, lasting for three days, spread from it for twenty miles around, streams of boiling mud poured down its sides, and in a few hours covered the city of Herculaneum, whilst a dense shower of hot volcanic dust completely buried the gay little seaside resort known as Pompeii. Many thousand persons perished, choked by the vapours or overwhelmed by the hot cinders or engulfed in the boiling mud.

The great naturalist Pliny was in command of the fleet at Cape Misenum, and went by ship across the bay to render assistance to the inhabitants of the towns at the foot of Vesuvius. Pliny's nephew wrote two letters to the historian Tacitus, giving an account of these events and of the remarkable courage and coolness of his uncle, who, after sleeping the night at Stabiae, was suffocated by the sulphurous vapours as he advanced into the open country near the volcano. The friends who were with him left him to his fate and made their escape. The younger Pliny had prudently remained, out of danger, with his mother at Misenum.

The alternating periods of activity and of rest exhibited by volcanoes seem to us capricious, and even at the present day are not sufficiently well understood to enable us to discern any order or regularity in their succession. Vesuvius is a thousand centuries old, and we have only known it for thirty. We cannot expect to get the time-table of its activities on so brief an acquaintance. Strangely enough, Vesuvius, having, after immemorial silence, spasmodically burst into eruption and spread devastation around it, resumed its slumber for many years. There is no mention of its activity for 130 years after A.D. 79. Then it growled and sent forth steam and cinder-dust to an extent sufficient to attract attention again; its efforts were thereafter recorded once or so in a century, though little, if any, harm was done by it. In A.D. 1139 there was a great throwing-up of dust and stones, with steam, which reflected the light of molten lava within the crater, and looked like flames. And then for close on 500 years there was little, if any, sign of activity. The "eruptions" between that of A.D. 79 and that of A.D. 1139 had been ejections of steam and cinders, unaccompanied by any flow or stream of lava. Then suddenly the whole business shut up for 500 years, and after that-also quite suddenly-in 1631, a really big eruption took place, exceeding in volume the catastrophe of Pliny's date. Not only were columns of dust and vapour ejected to a height of many miles, but several streams of white-hot lava overflowed the edge of the crater and reached the seacoast, destroying towns and villages on the way. Some of these lava-streams were five miles broad, and can be studied at the present day. As many as 18,000 persons were killed.

The crater or basin formed by a volcano starts with the opening of a fissure in the earth's surface communicating by a pipe-like passage with very deeply-seated molten matter and steam. Whether the molten matter thus naturally "tapped" is only a local, though vast, accumulation, or is universally distributed at a given depth below the earth's crust, and at how many miles from the surface, is not known. It seems to be certain that the great pressure of the crust of the earth must prevent the heated matter below it from becoming either liquid or gaseous, whether the heat of that mass be due to the cracking of the earth's crust and the friction of the moving surfaces as the crust cools and shrinks, or is to be accounted for by the original high temperature of the entire mass of the terrestrial globe. It is only when the gigantic pressure is relieved by the cracking or fissuring of the closed case called "the crust of the earth" that the enclosed deep-lying matter of immensely high temperature liquefies, or even vaporizes, and rushes into the up-leading fissure. Steam and gas thus "set free" drive everything before them, carrying solid masses along with them, tearing, rending, shaking "the foundations of the hills," and issuing in terrific jets from the earth's surface, as through a safety valve, into the astonished world above. Often in a few hours they choke their own path by the destruction they produce and the falling in of the walls of their briefly-opened channels. Then there is a lull of hours, days, or even centuries, and after that again, a movement of the crust, a "giving" of the blockage of the deep, vertical pipe, and a renewed rush and jet of expanding gas and liquefying rock.

The general scheme of this process and its relations to the structure and properties of the outer crust and inner mass of the globe is still a matter of discussion, theory and verification; but whatever conclusions geologists may reach on these matters, the main fact of importance is that steam and gases issue from these fissures with enormous velocity and pressure, and that "a vent" of this kind, once established, continues, as a rule, to serve intermittently for centuries, and, indeed, for vast periods to which we can assign no definite limits. The solid matter ejected becomes piled up around the vent as a mound, its outline taking the graceful catenary curves of rest and adjustment to which are due the great beauty of volcanic cones. The apex of the cone is blown away at intervals by the violent blasts issuing from the vent, and thus we have formed the "crater," varying in the area enclosed by its margin and in the depth and appearance of the cup so produced. At a rate depending on the amount of solid matter ejected by the crater, the mound will grow in the course of time to be a mountain, and often secondary craters or temporary openings, connected at some depth with the main passage leading to the central vent, will form on the sides of the mound or mountain. Sometimes the old crater will cease to grow in consequence of the blocking of its central vent and the formation of one or more subsidiary vents, the activity of which may blast away or smother the cup-like edge of the first crater.

Such a history has been that of Vesuvius shown in outline in Fig. 31. In geologic ages-perhaps some thousands of centuries ago-Vesuvius was probably a perfect cone some 7000 ft. high, rising by a characteristically accelerated upgrowth from a circle of ten miles or more in diameter to its delicate central peak, hollowed out at the summit by a small crater a couple of hundred yards across. Its eruptions at that time were neither excessive nor violent. Then came a period of greatly increased energy-the steam-jet blew with such violence that it shattered and dispersed the cone, lowering the mountain to 3700 ft. in height, truncating it and leaving a proportionately widened crater of a mile and a half in diameter. And then the mountain reposed for long centuries. We do not know how long this period of extinction was, for we do not know when it began, but we know that this was the state of the mountain when in A.D. 79 it once more burst into life. In recent years-that is, since the seventeenth century A.D., a curious change took place in the mountain: the vent or orifice of the conducting channel by which eruptive matters were brought to the surface ceased to be in the centre of the wide broken-down crater of Pliny's time, and a vent was formed a few hundred yards to the south of the centre of the old crater, nearer to the south side of the old crater's wall. From this ashes or cinders issued, and were piled up to form a new cone, which soon added 600 ft. to the height of the mountain and covered in the southern half of the old crater's lip, whilst leaving the northern half or semicircle free. This latter uncovered part was called by the Italians "Monte Somma," and the new cone low down in the southern side of which the rest of the old crater-lip could be traced, was henceforth spoken of as "the ash-cone" and sometimes misleadingly as "the true" Vesuvius. Clearly it was not "the true Vesuvius" since it was a new growth. The original old Vesuvius was crowned by a crater formed by the cliffs of Monte Somma and their continuation round to the south side, now more or less completely concealed by the new ash-cone.

In the course of various eruptions during the last two centuries the new ash-cone thus formed was blown away more or less completely, and gradually grew up again. During the nineteenth century it was a permanent feature of the mountain, though a good deal cut down in 1822, and later grew so high as to give a total elevation from the sea-level of 4300 ft. The crater at the top of the ash-cone has varied during the past century in width and depth, according to its building up or blowing away by the central steam jet. In 1822 it is reported to have been funnel-like and 2000 ft. deep, tapering downwards to the narrow fissures which are the actual vent. At other times it has been largely filled by d?bris, and only 200 ft. deep. Molten lava has often issued from fissures in the sides of the ash-cone, and even lower down on the sides of the mountain, and a very small secondary crater has sometimes appeared on the side of the ash-cone 100 ft. or 200 ft. from the terminal crater which "finishes off" the cone.

Such was the condition of the mountain when I first saw it in the autumn of 1871. Six months later I witnessed the most violent eruption of the nineteenth century. Vesuvius kept up a continuous roar like that of a railway engine letting off steam when at rest in a covered station only a thousandfold bigger. Its vibrations shook with a deep musical note, for twenty-four hours, the house nine miles distant in Naples in which I was staying. My windows commanded a view of the mountain, and when the noise ceased and the huge steam-cloud cleared away, I saw a different Vesuvius, the higher part of the ash-cone was gone, and a huge gap in it had been formed by the blowing away of its northern side.

In October 1871, when I joined my friend Anton Dohrn at Naples in order to study the marine creatures of the beautiful bay, Vesuvius was in the proud possession of a splendid cone, completing its graceful outline. A little steam-cloud hung about one side of the cone during the day, and as night came on Vesuvius used, as we said, to "light his cigar." In fact, a very small quantity of molten lava was at that time flowing from the side of the ash-cone, about 100 ft. from its summit, and this gave a most picturesque effect as we watched it from our balcony high up on Pausilippo, when the sun set. It was a friendly sort of beacon, far away on the commanding mountain's top, which was answered by the lighting up of a thousand lamps along the coast, and by innumerable flaming faggots in the fishermen's boats moving across the bay, drawing to their light strange fishes, to be impaled by the long tridents of the skilful spearmen. That little beacon light on Vesuvius increased in volume in the course of three weeks, and was supplemented by other flaming streams and by showers of red-hot stones from the crater. This small "eruption" was the precursor by six months of the great eruption of the end of April 1872, and I spent a night on Vesuvius during its progress, and looked into the crater from which the glowing masses of rock were being belched forth.

Not long before I went, in 1871, to Naples I had spent some weeks in visiting the extinct volcanoes of the Auvergne and of the Eiffel, and I was eager to examine the still living Vesuvius. In the first week of October I made an excursion to the crater of Vesuvius in company with the son of a Russian admiral, whose name, "Popoff," was under the circumstances unpleasantly suggestive. We examined some black slaglike masses of old lava-streams, and struggled up the loose sandy ash-cone , and prodded with our sticks the few yards of molten lava which emerged from the side of the cone about 100 ft. from the summit. On Nov. 1 my friend Anton Dohrn was with me and some Neapolitan acquaintances looking at Vesuvius across the bay from Pausilippo, where we had established ourselves, when we noticed that a long line of steam was rising from the lower part of the ash-cone and that puffs of steam were issuing at intervals from the crater. "Dio mio! Dio di Dio!" cried the Neapolitans in terror, and expressed their intention of leaving Naples without an hour's delay. As night fell a new glowing line of fire appeared far down near the base of the ash-cone, whilst what looked in the distance like sparks from a furnace, but were really red-hot stones-each as big as a Gladstone bag-were thrown every two or three minutes from the crater.

We hired a carriage, drove to Resina , and walked up towards the Observatory in order to spend the night on the burning mountain. We found that two white-hot streams, each about twenty yards broad at the free end, were issuing from the base of the cone. The glowing stones thrown up by the crater were now separately visible; a loud roar accompanied each spasmodic ejection. The night was very clear, and a white firmly-cut cloud, due to the steam ejected by the crater, hung above it. At intervals we heard a milder detonation-that of thunder which accompanied the lightning which played in the cloud, giving it a greenish illumination by contrast with the red flame colour reflected on to it by red-hot material within the crater. The flames attributed to volcanoes are generally of this nature, but actual flames do sometimes occur in volcanic eruptions by the ignition of combustible gases. The puffs of steam from the crater were separated by intervals of about three minutes. When an eruption becomes violent they succeed one another at the rate of many in a second, and the force of the steam jet is gigantic, driving a column of transparent super-heated steam with such vigour that as it cools into the condition of "cloud" an appearance like that of a gigantic pine-tree seven miles high is produced.

We made our way to the advancing end of one of the lava-streams , which was 20 ft. high, and moved forwards but slowly, in successive jerks. Two hundred yards farther up, where it issued from the sandy ashes, the lava was white-hot and running like water, but it was not in very great quantity and rapidly cooled on the surface and became "sticky." A cooled skin of slag was formed in this way, which arrested the advancing stream of lava. At intervals of a few minutes this cooled crust was broken into innumerable clinkers by the pressure of the stream, and there was a noise like the smashing of a gigantic store of crockery ware as the pieces or "clinkers" fell over one another down the nearly vertical "snout" of the lava-stream, whilst the red-hot molten material burst forward for a few feet, but immediately became again "crusted over" and stopped in its progress. We watched the coming together and fusion of the two streams and the overwhelming and burning up of several trees by the steadily, though slowly, advancing river of fire. Then we climbed up the ash-cone, getting nearer and nearer to the rim of the crater, from which showers of glowing stones were being shot. The deep roar of the mountain at each effort was echoed from the cliffs of the ancient mother-crater, Monte Somma, and the ground shook under our feet as does a ship at sea when struck by a wave. The night was very still in the intervals. The moon was shining, and a weird melancholy "ritornelle" sung by peasants far off in some village below us came to our ears with strange distinctness. It might have been the chorus of the imprisoned giants of Vulcan's forge as they blew the sparks with their bellows and shook the mountains with the heavy blows of their hammers.

As we ascended the upper part of the cone the red-hot stones were falling to our left, and we determined to risk a rapid climb to the edge of the crater on the right or southern side, and to look into it. We did so, and as we peered into the great steaming pit a terrific roar, accompanied by a shuddering of the whole mountain, burst from it. Hundreds of red-hot stones rose in the air to a height of 400 ft., and fell, happily in accordance with our expectation, to our left. We ran quickly down the sandy side of the cone to a safe position, about 300 ft. below the crater's lip, and having lit our pipes from one of the red-hot "bombs," rested for a while at a safe distance and waited for the sunrise. A vast horizontal layer of cloud had now formed below us, and Vesuvius and the hills around Naples appeared as islands emerging from a sea. The brilliant sunlight was reassuring after this night of strange experiences. The fields and lanes were deserted in the early morning as we descended to the sea-level. On our way we met a procession of weird figures clad in long white robes, enveloping the head closely but leaving apertures for the eyes. They were a party of the lay-brothers of the Misericordia carrying a dead man to his grave. Then we found our carriage, and drove quickly back to Naples and sleep!

After ten days I was able to get about, and drove over to one of these villages and along its main street, which was closely blocked at the end by what looked like a railway embankment some 40 ft. high. This was the side of the great lava-stream now cooled and hardened on the surface. It had sharply cut the houses, on each side of the street, in half without setting them on fire, so that the various rooms were exposed in section-pictures hanging on the walls, and even chairs and other furniture remaining in place on the unbroken portion of the floor. The villagers had provided ladders by which I ascended the steep side of the embankment-like mass at the end of the street, and there a wonderful sight revealed itself. One looked out on a great river seven miles long, narrow where it started from the broken-down crater, but widening to three miles where I stood, and wider still farther on as it descended. This river, with all its waves and ripples, was turned to stone, and greatly resembled a Swiss glacier in appearance. A foot below the surface it was still red-hot, and a stick pushed into a crevice caught fire. It was not safe to venture far on to the pie-crust surface. A couple of miles away the campanile of the church of a village called Massa di Somma stood out, leaning like that of Pisa, from the petrified mass, whilst the rest of the village was overwhelmed and covered in by the great stream.

The curious resemblance of the lava-stream to a glacier arose from the fact that it was almost completely covered by a white snow-like powder. This snow-like powder, which often appears on freshly-run lava, is salt-common sea salt and other mineral salts dissolved in the water ejected as steam mixed with the lava. The steam condenses, as the lava cools, into water and evaporates slowly, leaving the salt as crystals. Often these are not white, but contain iron salt, mixed with the white sodium, potassium, and ammonium chlorides, which gives them a yellow or orange colour. Salts coloured in this way have the appearance of sulphur, and are often mistaken for it. The whole of the interior of the crater of Vesuvius when I revisited it in 1875 was thus coloured yellow, and I have a water-colour sketch of the scene made by a friend who came with me for the purpose. As a matter of fact, though small quantities of the choking gas called "sulphurous acid" are among the vapours given off by Vesuvius, there is no deposit of sulphur there. Some large volcanoes have made deposits of sulphur, which are dug for commercial purposes; but the sulphur of Sicily is not, and has not been, thrown out or volatilized by Etna. It occurs in rough masses and in splendid crystals in a tertiary calcareous marine deposit, and its deposition was probably due to a chemical decomposition of constituents of the sea water brought about by minute plants, known as "sulphur bacteria." Whether the neighbouring great volcano had any share in the process seems to be doubtful.

It is generally supposed that sea-water makes its way in large quantity through fissures connected with volcanic channels, and is one of the agents of the explosions caused by the subterranean molten matter. Gaseous water, hydrochloric acid, carbonic acid, hydrofluoric acid, and even pure hydrogen and oxygen and argon are among the gases ejected by volcanoes.

Add to tbrJar First Page Next Page Prev Page

 

Back to top