Read Ebook: The Genetic Effects of Radiation by Asimov Isaac Dobzhansky Theodosius
Font size:
Background color:
Text color:
Add to tbrJar First Page Next Page Prev Page
Ebook has 209 lines and 18955 words, and 5 pages
Suppose, for instance, that man had lived in tropical areas for thousands of years and had developed a heavily pigmented skin as a protection against sunburn. Any child who, through a mutation, found himself incapable of forming much pigment, would be at a severe disadvantage in the outdoor activities engaged in by his tribe. He would not do well and such a mutated gene would never establish itself for long.
If a number of these men migrated to northern Europe, however, children with dark skin would absorb insufficient sunlight during the long winter when the sun was low in the sky, and visible for brief periods only. Dark-skinned children would, under such conditions, tend to suffer from rickets.
Mutant children with pale skin would absorb more of what weak sunlight there was and would suffer less. There would be little danger of sunburn so there would be no penalty counteracting this new advantage of pale skins. It would be the dark-skinned people who would tend to die out. In the end, you would have dark skins in Africa and pale skins in Scandinavia, and both would be "fit".
In the same way, any child born into a primitive hunting society who found himself with a mutated gene that brought about nearsightedness would be at a distinct disadvantage. In a modern technological society, however, nearsighted individuals, doing more poorly at outdoor games, are often driven into quieter activities that involve reading, thinking, and studying. This may lead to a career as a scientist, scholar, or professional man, categories that are valuable in such a society and are encouraged. Nearsightedness would therefore spread more generally through civilized societies than through primitive ones.
Then, too, a gene may be advantageous when it occurs in low numbers and disadvantageous when it occurs in high numbers. Suppose there were a gene among humans that so affected the personality as to make it difficult for a human being to endure crowded conditions. Such individuals would make good explorers, farmers, and herdsmen, but poor city dwellers. Even in our modern urbanized society, such a gene in moderate concentration would be good, since we still need our outdoorsmen. In high concentration, it would be bad, for then the existence of areas of high population density might become impossible.
A species with an invariable set of genes could not change to suit altered conditions. Even a slight shift in the nature of the environment might suffice to wipe it out.
The possession of a gene pool lends flexibility, however. As conditions change, one combination of varieties might gain over another and this, in turn, might produce changes in body characteristics that would then further alter the relative "goodness" or "badness" of certain gene patterns.
Thus, over the past million years, for example, the human brain has, through mutations and appropriate shifts in emphasis within the gene pool, increased notably in size.
Genetic Load
Some gene mutations produce characteristics so undesirable that it is difficult to imagine any reasonable change in environmental conditions that would make them beneficial. There are mutations that lead to the nondevelopment of hands and feet, to the production of blood that will not clot, to serious malformations of essential organs, and so on. Such mutations are unqualifiedly bad.
A gene governing a lethal characteristic may be dominant. It will then kill even though the corresponding gene on the other chromosome of the pair is normal. Under such conditions, the lethal gene is removed in the same generation in which it is formed.
The lethal gene may, on the other hand, be recessive. Its effect is then not evident if the gene it is paired with is normal. The normal gene carries on for both.
The only way to avoid a genetic load is to have no mutations and therefore no gene pool. The gene pool is necessary for the flexibility that will allow a species to survive and evolve over the eons and the genetic load is the price that must be paid for that. Generally, the capacity for a species to reproduce itself is sufficiently high to make up, quite easily, the numbers lost through the combination of deleterious genes.
Even though deleterious genes are removed relatively rapidly, if dominant, and lethal genes are removed in the same generation in which they are formed, a new crop of deleterious genes will appear by mutation with every succeeding generation. The equilibrium level for such dominant deleterious genes is relatively low, however.
Deleterious genes that are recessive are removed much more slowly. Those persons with two such genes, who alone show the bad effects, are like the visible portion of an iceberg and represent only a small part of the whole. The heterozygotes, or carriers, who possess a single gene of this sort, and who live out normal lives, keep that gene in being. If people in a particular population marry randomly and if one out of a million is born homozygous for a certain deleterious recessive gene , one out of five hundred is heterozygous for that same gene, shows no ill effects, and is capable of passing it on.
It may be that the heterozygote is not quite normal but does show some ill effects--not enough to incommode him seriously, perhaps, but enough to lower his chances slightly for mating and bearing children. In that case, the equilibrium level for that gene will be lower than it would otherwise be.
It may also be that the heterozygote experiences an actual advantage over the normal individual under some conditions. There is a recessive gene, for instance, that produces a serious disease called sickle-cell anemia. People possessing two such genes usually die young. A heterozygote possessing only one of these genes is not seriously affected and has red blood cells that are, apparently, less appetizing to malaria parasites. The heterozygote therefore experiences a positive advantage if he lives in a region where the incidence of certain kinds of malaria is high. The equilibrium level of the sickle-cell anemia gene can, in other words, be higher in malarial regions than elsewhere.
Here is one subject area in which additional research is urgently needed. It may be that the usefulness of a single deleterious gene is greater than we may suspect in many cases, and that there are greater advantages to heterozygousness than we know. This may be the basis of what is sometimes called "hybrid vigor". In a world in which human beings are more mobile than they have ever been in history and in which intercultural marriages are increasingly common, information on this point is particularly important.
Mutation Rates
It is easier to observe the removal of genes through death or through failure to reproduce than to observe their production through mutation. It is particularly difficult to study their production in human beings, since men have comparatively long lifetimes and few children, and since their mating habits cannot well be controlled.
For this reason, geneticists have experimented with species much simpler than man--smaller organisms that are short-lived, produce many offspring, and that can be penned up and allowed to mate only under fixed conditions. Such creatures may have fewer chromosomes than man does and the sites of mutation are more easily pinned down.
An important assumption made in such experiments is that the machinery of inheritance and mutation is essentially the same in all creatures and that therefore knowledge gained from very simple species is applicable to man. There is overwhelming evidence to indicate that this is true in general, although there are specific instances where it is not completely true and scientists must tread softly while drawing conclusions.
That particular chromosome, however, contained at least 500 genes capable of undergoing a lethal mutation. If each of those genes is equally likely to undergo such a mutation, then the chance that any one particular gene is lethal is one out of 200 x 500, or 1 out of 100,000.
This is a typical mutation rate for a gene in higher organisms generally, as far as geneticists can tell . Naturally, a chance for mutation takes place every time a new individual is born. Fruit flies have many more offspring per year than human beings, since their generations are shorter and they produce more young at a time. For that reason, though the mutation rate may be the same in fruit flies as in man, many more actual mutations are produced per unit time in fruit flies than in men.
This does not mean that the situation may be ignored in the case of man. Suppose the rate for production of a particular deleterious gene in man is 1 out of 100,000. It is estimated that a human being has at least 10,000 different genes, and therefore the chance that at least one of the genes in a sex cell is deleterious is 10,000 out of 100,000 or 1 out of 10.
Furthermore, it is estimated that the number of gene mutations that are weakly deleterious are four times as numerous as those that are strongly deleterious or lethal. The chances that at least one gene in a sex cell is at least weakly deleterious then would be 4 + 1 out of 10, or 1 out of 2.
Naturally, these deleterious genes are not necessarily spread out evenly among human beings with one to a sex cell. Some sex cells will be carrying more than one, thus increasing the number that may be expected to carry none at all. Even so, it is supposed that very nearly half the sex cells produced by humanity carry at least one deleterious gene.
Even though only half the sex cells are free of deleterious genes, it is still possible to produce a satisfactory new generation of men. Yet one can see that the genetic load is quite heavy and that anything that would tend to increase it would certainly be undesirable, and perhaps even dangerous.
We tend to increase the genetic load by reducing the rate at which deleterious genes are removed, that is, by taking care of the sick and retarded, and by trying to prevent discomfort and death at all levels.
There is, however, no humane alternative to this. What's more, it is, by and large, only those with slightly deleterious genes who are preserved genetically. It is those persons with nearsightedness, with diabetes, and so on, who, with the aid of glasses, insulin, or other props, can go on to live normal lives and have children in the usual numbers. Those with strongly deleterious genes either die despite all that can be done for them even today or, at the least, do not have a chance to have many children.
The danger of an increase in the genetic load rests more heavily, then, at the other end--at measures that increase the rate of production of mutant genes. It is to this matter we will now turn.
RADIATION
Ionizing Radiation
Our modern technological civilization exposes mankind to two general types of genetic dangers unknown earlier: Synthetic chemicals absent in earlier eras, and intensities of energetic radiation equally unknown or unprecedented.
Chemicals can interfere with the process of replication by offering alternate pathways with which the cellular machinery is not prepared to cope. In general, however, it is only those cells in direct contact with the chemicals that are so affected, such as the skin, the intestinal linings, the lungs, and the liver . These may undergo somatic mutations, and an increased incidence of cancer in those tissues is among the drastic results of exposure to certain chemicals.
Such chemicals are not, however, likely to come in contact with the gonads where the sex cells are produced. While individual persons may be threatened by the manner in which the environment is being permeated with novel chemicals, the next generation is not affected in advance.
Radiation is another matter. In its broadest sense, radiation is any phenomenon spreading out from some source in all directions. Physically, such radiation may consist of waves or of particles. Of the wave forms the two best-known are sound and electromagnetic radiations.
Sound carries very low concentrations of energy. This energy is absorbed by living tissue and converted into heat. Heat in itself can increase the mutation rate but the effect is a small one. The body has effective machinery for keeping its temperature constant and the gonads are not likely to suffer unduly from exposure to heat.
Electromagnetic radiation comes in a wide range of energies, with visible light about in the middle of the range. Electromagnetic radiations less energetic than light are converted into heat when absorbed by living tissue. The heat thus formed is sufficient to cause atoms and molecules to vibrate more rapidly, but this added vibration is not usually sufficient to pull molecules apart and therefore does not bring about chemical changes.
Light will bring about some chemical changes. It is energetic enough to cause a mixture of hydrogen and chlorine to explode. It will break up silver compounds and produce tiny black grains of metallic silver . Living tissue, however, is largely unaffected--the retina of the eye being one obvious exception.
Ultraviolet light, which is more energetic than visible light, correspondingly can bring about chemical changes more easily. It will redden the skin, stimulate the production of pigment, and break up certain steroid molecules to form vitamin D. It will even interfere with replication to some extent. At least there is evidence that persistent exposure to sunlight brings about a heightened tendency to skin cancer. Ultraviolet light is not very penetrating, however, and its effects are confined to the skin.
Electromagnetic radiations more energetic than ultraviolet light, such as X rays and gamma rays, carry sufficient concentrations of energy to bring about changes not only in molecules but in the very structure of the atoms making up those molecules.
Atoms consist of particles , each carrying a negative electric charge and circling a tiny centrally located nucleus, which carries a positive electric charge.
Ordinarily, the negative charges of the electrons just balance the positive charge on the nucleus so that atoms and molecules tend to be electrically neutral. An X ray or gamma ray, crashing into an atom, will, however, jar electrons loose. What is left of the atom will carry a positive electric charge with the charge size proportional to the number of electrons lost.
The direct effect of ionizing radiation on chromosomes can be serious. Enough chemical bonds may be disrupted so that a chromosome struck by a high-energy wave or particle may break into fragments. Even if the chromosome manages to remain intact, an individual gene along its length may be badly damaged and a mutation may be produced.
If only direct hits mattered, radiation effects would be less dangerous than they are, since such direct hits are comparatively few. However, near-misses may also be deadly. A streaking bit of radiation may strike a water molecule near a gene and may break up the molecule to form a free radical. The free radical will be sufficiently energetic to bring about a chemical reaction with almost any molecule it strikes. If it happens to strike the neighboring gene before it has disposed of that energy, it will produce the mutation as surely as the original radiation might have.
Furthermore, ionizing radiations tend to be penetrating, so that the interior of the body is as exposed as is the surface. The gonads cannot hide from X rays, gamma rays, or cosmic particles.
All these radiations can bring about somatic mutations--all can cause cancer, for instance.
What is worse, all of them increase the rate of genetic mutations so that their presence threatens generations unborn as well as the individuals actually exposed.
Background Radiation
In addition, all the earth is bombarded with cosmic rays from outer space and with streams of high-energy particles from the sun.
Add to tbrJar First Page Next Page Prev Page