bell notificationshomepageloginedit profileclubsdmBox

Read Ebook: Old Mines of Southern California Desert-Mountain-Coastal Areas Including the Calico-Salton Sea Colorado River Districts and Southern Counties by Fairbanks Harold W Harold Wellman Storms William H

More about this book

Font size:

Background color:

Text color:

Add to tbrJar First Page Next Page Prev Page

Ebook has 409 lines and 54877 words, and 9 pages

As the ca?on opens out to the desert, hills appear on either side formed of volcanic tuffs. They dip northeast 30?. Underneath is a sandstone wholly unconsolidated and dipping in the same direction 40?. This contains no lava pebbles. The fragments of the tuff are quite varied in character and generally quite angular. They are imbedded in a volcanic mud, free from granitic detritus. In some of the strata appear thin beds of lava, seeming to represent a flow. These tufa hills extend northwesterly along the base of the granite mountains for 10 miles or more. It is not known how far they go in a southerly direction. In places they form mountains of considerable size high up on the side of the range. The range of mountains between this point and Carrizo Creek appears also to have some volcanic beds on its southern slope. The open desert at the foot of the mountains has an elevation of 1,200 feet. It slopes gently for miles in an easterly direction and consists largely of loose sand.

Between Mountain Springs and the summit is another illustration of the fact that lamination in a crystalline rock is no proof of its sedimentary origin. A small dike less than 2 inches thick cuts across a coarse biotite gneiss at an angle of 30?. It is separated from the gneiss by a thin layer of quartz and feldspar. It is made up of the same constituents as the gneiss, arranged so as to show a well-pronounced gneissoid structure. This is very similar to the large dikes seen in the ca?on.

The road was followed back to Campo, and from there the Laguna Mountains were climbed. The road ascends a long, narrow ca?on on the southern slope. At the entrance to the ca?on, 4 miles southeast of Buckman's Springs, the mountains are high and rocky, being formed of thin-bedded gneisses, which, in many places, blend into mica schists. They strike parallel to the mountain axis, a little west of north; dip 70? northeast. Three miles up the ca?on the gneiss becomes thick-bedded and is finally replaced by mica diorite, which forms the hills on both sides. Granitic dikes outcrop near the junction and sometimes apparently in the diorite. There is often a blending between the two, as if the intrusion of both took place nearly at the same time. The region east of the southern end of the mountains is formed of coarse granite, decomposed to a considerable depth. The mica diorite extends northward, forming the whole central and western part of the mountains. On the east it is bordered by a slightly higher ridge, forming the crest of the mountains. This rock does not decompose as easily as the granite and gneisses on the west, and there consequently remains a mountain plateau having an elevation of about 5,500 feet. There is a considerable amount of pine timber and open meadows. The dark diorite forms one of the highest peaks of the Laguna Mountains, rising 6,250 feet. The highest portion of the mountains lies to the northeast, and is formed chiefly of a quartzose mica schist. From the eastern crest of the range a most magnificent view of the desert is obtained. The strata on the crest strike north 15? west, dip 70? northeast. The descent of 4,000 feet to Vallecitos is very abrupt. Near the crest it is almost as steep as the dip of the rocks. The mica schists in places approach gneiss in composition, but all of this series of rocks forming the crest and eastern slope very probably belong to the Metamorphic Series. South of this point the Laguna Mountains do not terminate so abruptly, but extend out in long, gradually descending ridges for many miles. The mica diorite extends north of the Laguna about a mile, when the schists on both east and west sides unite and extend north toward Banner. They are intruded by granite and diorite in many places. The body of diorite forming the Laguna plateau is about 8 miles long and 1 1/2 to 2 miles wide. The highest peak is not over 200 feet lower than the Cuyamaca, rising 6,300 feet. The diorite seems to have been intruded in the middle of a considerable area of mica schists, for this rock outcrops on all sides. On the west, toward Pine Valley, they carry the gold veins of the Pine Valley district. The descent is very abrupt to Pine Valley and Buckman's Springs. The schists and gneisses extend about 3 miles south of the main portion of the mountains, when they are replaced by coarse hornblendic granite.

Buckman's Springs has an elevation of 3,400 feet. Here are some very excellent soda springs, the only ones I know of in this section of the State. A coarse, dark diabase outcrops in the edge of the mountains just north of Buckman's and also a little farther south, on the west side of the valley.

A narrow ca?on leads up to the divide which separates the valley of the upper Cottonwood from Pine Valley. The western prolongation of the diorite of the Laguna Mountains appears near the road on the divide. The prevailing rock is, however, of a granitoid nature and filled with many large bunches of massive white quartz. Pine Valley has an elevation of 3,800 feet. Gneisses and hornblendic and micaceous schists outcrop between the valley and the divide east of Descanso. The strike is north and south. One mile southeast of Descanso there is another outcrop of the coarse diabase or gabbro which forms so much of the Cuyamaca peaks. Descanso has an elevation of 3,400 feet. The rock which outcrops for a number of miles along the road to Stonewall is a coarse, easily decomposed granite, rising in rounded knobs over a rolling, brush-covered country.

The Pine Valley district lies in a belt of gneissose, mica schist, and quartzose rocks, which extend in a direction a little west of north. They begin about 2 miles south of Pine Creek and extend, probably unbroken, through to Banner and Julian. It is 4 miles north to the Deer Park district. The metamorphic schists widen as this district is approached. They extend from the desert slope to Deer Park, where a body of diorite has been intruded, and from there westward 2 miles to the Cuyamaca grant. A half mile west of the camp the slaty mica schists and quartzites are well defined. A vein of gold-bearing quartz has been traced for several miles in these rocks, and a number of locations have been made on it. The strike is north and south, dip 80? to the east. A body of white crystalline limestone lies in this formation, about 1 1/2 miles southwest of Deer Park. The body of micaceous diorite which extends through this camp is about a mile long, and is quite gneissoid in places. Near its southern end it incloses narrow bands of hornblendic and feldspathic rock, containing garnets. The veins are numerous in this diorite, and extend in every conceivable direction. The diorite has been greatly crushed at some time, with fissures in every direction; hence, the irregularity of the quartz veins. The veins are generally bunchy, and not often very large. They seem simply to follow the exceedingly irregular fracturing of the diorite, which is decomposed to a considerable depth. The work thus far in this district has been confined to the surface, so that nothing can be said in regard to the permanency of the veins. The elevation of the camp is 4,600 feet.

Two miles northward an outcrop of coarse biotite muscovite granite was met. It is about 2 miles long and 1 mile wide, having schists on all sides of it. This is the only example of typical granite that was seen in Southern California. A broad valley, occupied by Mr. Harper's ranch, has been eroded in the center of this granitic mass.

Northward, along the crest of the range overlooking the desert, mica slates appear. They are so little metamorphosed as to closely resemble argillaceous slate. They strike a little west of north, dip 70? to 80? east, and maintain the same character north to Banner and Julian.

The road from Julian to Stonewall crosses mica schist and gneisses for about half the distance. Then we met outcrops of a dark basic rock, ranging from fine to very coarse texture. It extends southward and covers a large extent of country. The three Cuyamaca peaks, the highest in the southern part of the county, are formed of this rock. This rock was again met about half a mile west of the Stonewall Mine. It extends westward across the mountains for at least 2 miles, and some miles south of the main peak. In places it has a schistose structure. Near the outlet of the Cuyamaca reservoirs it is filled with vein-like aggregates of coarse hornblende crystals, which are probably the result of secondary crystallization in fissures or cracks of the almost consolidated magma.

The formation in the vicinity of the Stonewall Mine is biotite gneiss. Toward the east it is not sharply defined from the mica schists. On the west it is generally more granitoid, though at one spot near the lake there are finely laminated schists, dipping 70? southwest. Southward, also, the gneisses become more massive and coarse. At the northeastern base of the main peak a body of coarse granite is partly inclosed in the norite. This norite assumes a dioritic habitus near the granite, with the development of biotite mica.

The valley of the Cottonwood was followed down several miles, when it was left and the Morena Valley traversed to its head. The mountains south of the valley are formed of a dark syenite. North and northwest the higher mountains consist of granite, with a great development of mica and hornblende schists along the slope facing the valley. Many granite dikes have been intruded into the schists. North of Mr. Candler's there is a great dike of pegmatite, carrying small garnets, tourmaline, mica, and large masses of quartz. This pegmatite dike cuts across the ca?on, forming a precipice on its lower side. On the upper side the soil has been retained, forming a small but fertile valley. The strike of the mica schists on the north is quite unusual, being north 75? west, dip nearly vertical. Dark syenite lies on the west of this little valley. Morena Valley has an elevation of 3,400 feet. A rough road leads over the mountains west to McClain's ranch, a distance of 10 miles; the highest point reached having an elevation of 4,000 feet. Near the summit there outcrops a body of coarse eruptive rock, probably a diorite. It consists of coarse hornblendic aggregates in a light-colored feldspathic matrix. This is followed by syenite, and that by coarse white granite as far as McClain's. The granite about the valley is coarse, with dark, fine crystalline inclusions. It has every character of a truly eruptive rock, even to the minute spaces between the components, left at the time of crystallization. The road now descends to a branch of the Cottonwood, and from the creek there is a long, gradual ascent to the pass north of Lyon's Peak. The north side of the pass is formed of another high and rugged granite range. This section is one of the wildest to be found in San Diego County. The mountains are bare granite, often precipitous; the valleys small and covered with brush. Crystalline limestone is reported to have been found in the granite 5 or 6 miles northeast of Renney's Pass. A very interesting eruptive rock outcrops east of the pass, on the north side of the road. In places it resembles the norite from Cuyamaca peaks. The rock consists largely of large, dark, cleavable crystals filled with small granular crystals of a green color, probably olivine. A large portion of the dark crystals are undoubtedly pyroxene, though there are some showing hornblende cleavage. This is one of the most peculiar and interesting rocks seen in the county, but, from lack of any opportunity to make a microscopic examination, no more definite definition can be given.

Coarse granite extends some distance west of the pass. It is decomposed to such a depth that no specimens could be obtained. A mile west of the pass a fine granite, apparently metamorphic, replaces the other. It contains much quartz, little mica, and yellowish feldspar. Some distance down the new grade a large body of diorite outcrops. It is one of the southern arms of a great mass of coarse, dark rock which forms the high mountains about Dehesa Post Office, on the Sweetwater. A large portion of this rock very closely resembles that forming the Cuyamaca, and is probably a gabbro.

Near the foot of the grade, 2 miles east of Jamul Post Office, this rock is very coarse, with large hornblende crystals. It extends out in the form of arms or dikes into the adjoining granitic rocks. This rock is very tough and heavy. Gneiss outcrops for 2 miles westward. It varies between thin-bedded micaceous strata and thick-bedded, almost granitic forms. It strikes north 15? east, dips 70? to 80? east. Farther down, toward the Oakdale House, this is replaced by coarse eruptive granites. Just below the Oakdale House there is a very interesting contact between granite, quartz porphyry, and diabase. The first rock exposed below the house is a rather dark micaceous syenite. Beyond this the rock becomes coarser, containing large grains of quartz and glassy feldspar, with inclusions of a very dark diabasic rock. In a little ca?on which comes down to the road from the east, this rock comes into contact with one which varies from a feldspathic mica schist, through a gneiss, to a quartz porphyry. The junction is very irregular and the two rocks are slightly mixed; sometimes branches of the syenite are partly inclosed in the porphyry. Some portions of the syenite show gas pores, or spaces left at the time of consolidation, one fourth to one half an inch in diameter. They are partly filled with secondary quartz. The next rock exposed up the ca?on is a mica schist; strike 15? west, dip vertical. Quartz porphyry follows this, then an irregular dike of granite, in which are imbedded nodules of quartz porphyry, some nearly a foot in diameter. Above the granite there appears a granitoid gneiss, with many cavities, arranged with their longer axes parallel to the schistose structure. This changes into a coarse, knotty granite, containing large nodules of dark petrosilex. A slight blending is noticeable. Farther up this is succeeded by a micaceous quartz feldspar porphyry, showing a somewhat gneissoid structure. It is out at right angles to this structure by jointing planes lying thickly together. It has a milky, vitreous luster, and contains inclusions of very coarse granite. The next rock exposed is a diabase 200 feet across. It is coarse in the middle and aphanitic on the edges. Adjoining it are bunches of granite and a fine, dark, compact mica schist, showing traces of little pebbles in places. The schist changes to a petrosilex, which comes in contact with a dike of very coarse granite. At the upper edge of this granite outcrop, and inclosed in it, is a stratum of fine, dark mica schist and a dike of quartz porphyry. At one end these inclusions are hidden, but at the other they have been bent, fractured, and the pieces separated some distance in the granite. . This is a most interesting example of the intrusive nature of the granite.

The granite dike is bounded on its upper side by one of aphanitic diabase 2 feet wide, followed by granite again. Nodules of the diabase appear in the edge of the granite. A stratum of wavy quartzose gneiss 10 feet wide follows the last dike of granite. It changes across the strike into a coarser gneiss, and that into irregular and partially blended masses of coarse granite, filled with long fragments of porphyry similar to a dike on the east. The quartz porphyry is very compact and brittle, and has a conchoidal fracture. The porphyry dike has a width of 8 feet. About it is still another dike of granite 12 feet across, and containing many long fragments of a diabasic rock, which appears next in the succession.

The diabase is cut by small, interlacing granite seams for 6 or 8 feet, and also contains some large, irregular, lenticular masses of the same rock. Still farther is another dark dike cut squarely across by granite. Fine granite and quartz porphyry dikes occur still farther east. The porphyry dikes all run about north 35? west, average dip 70? southwest. They extend along the summit of a ridge for more than half a mile, when the coarse granite becomes the country rock. On the summit of the hill at the head of the ca?on are strata of metamorphic rock, and also some veins of pegmatite, cutting across the porphyry. This wonderfully varied succession of rocks does not cover a width of more than a quarter of a mile. The relations exhibited here prove that the porphyry and diabase, as well as the schists, are older than the granite. The strip of country between the ancient porphyries of San Miguel and the coarse granite of Lyon's Peak and the ranges north is remarkably rich in its variety of intrusive rocks.

On the north bank of the Sweetwater, just above where the Spring Valley road crosses, is a large exposure of coarse granite, containing so many inclosures of a dark dioritic rock as to present the appearance of a conglomerate. It is cut by bunches and ramifying dikes of fine granite and diorite.

At Dehesa the granite is replaced by norite, which forms a high mountain on the north side of the river, and extends southeasterly 3 or 4 miles, forming two high peaks. In this are veins of hornblende aggregates, and in general appearance the rock bears the closest resemblance to that on the Cuyamaca.

Between the Oakdale House and the Sweetwater River, on the road to the dam, dark quartz mica diorites outcrop. They have been intruded by coarse granite in veins and bunches. A body of dark aphanitic rock, of uncertain origin, is inclosed in the diorite near the river. It may be a portion of the aphanitic rocks associated with the porphyries farther west. A little distance down the river the diorite is succeeded by conglomerate rocks, containing small garnets. The fragments are feldspathic in composition. Dark feldspathic porphyry then forms the prevailing rock for some distance. It shows great variations. Much of it contains no distinct crystals of feldspar, but is mottled by light green felsitic bodies of irregular outline. These contain chloritic substances, which decay out, leaving holes. There is a great variety of these ancient intrusives exposed along the sides of the river north of San Miguel Peak. None of the other crystalline rocks in San Diego County appear so old or show so much alteration.

Farther down the ca?on the rock assumes a fragmental appearance, having masses of feldspar in a dark matrix. It finally becomes a pronounced breccia, being formed largely of angular, felsitic fragments. The base in which these fragments lie decays away and leaves them standing out on the surface. This may be a tuff formed in water, but the matrix has undergone such alterations that nothing certain can be said about it. This breccia continues to the lower end of the ca?on. An interesting, light-colored dike was observed here. It is so filled with minute spherical amygdules as to resemble in structure an oolitic limestone. The breccia continues as far as the Sweetwater Dam, where it is replaced by feldspar porphyry. The porphyry shows much variation; in places no feldspar crystals are present, chlorite taking their place. These rocks disappear a quarter of a mile west of the dam, and mesa-like hills extend down to Chula Vista. These consist of soft sandstones and some calcareous deposits. Dark rocks, belonging to the series just described, outcrop near the mesa road from San Diego to El Cajon. It forms a long ridge south of La Mesa. The rocks are in part tufaceous, and in part dark green and massive, with felsitic inclusions. Near the Eleven-Mile House the granite is filled with dark, bowlder-like inclusions. Hornblende is an important constituent of the granite. It is more than likely that many of these so-called granites are really diorites. The mesa formation terminates in an abrupt escarpment on the west of Cajon Valley. The valley comprises many thousand acres of very fertile land. Granitic knobs rise in many parts of the valley, showing that the alluvium deposit is underlaid by it at no great depth. North of the valley, for a number of miles, the crystalline rocks are covered by the mesa conglomerates. Granitic rocks are the only ones exposed for many miles east of Lakeside. Just above Forster's there is a small outcrop of gneiss and mica schist; strike north 35? west, dip 70? northeast. The rock exposed along the grade is a coarse biotite granite, with much quartz and glassy feldspar. A dike of quartz porphyry varying to granite porphyry outcrops by the road at the top of the grade. This does not seem to be sharply defined from the adjoining granite. A dark hornblende granite or diorite begins here and outcrops along the road for several miles toward Ramona. Three miles from the town there appears a dark rock with a somewhat resinous luster. It is probably a diabase. The Santa Maria is a large, plateau-like valley, with low granite hills surrounding it. Light-colored granite, becoming somewhat hornblendic, extends some distance east of Ramona, when it is replaced by a dark diorite. The latter extends along the road for 2 miles. It has glassy feldspar, and in places much mica. Four miles west of Ballena the granite is filled with pegmatitic veins, running in a northwesterly direction. They carry brittle crystals of black tourmaline, garnet, and muscovite mica. East of Ballena the rock becomes coarser and somewhat gneissose, with an abundance of mica. There are no bedding planes, simply a parallelism of constituents. This schistose structure has a northwest direction. The gneiss changes to mica schist on the grade above Santa Ysabel. The schist alternates with occasional strata of quartzite; strike north 25? west. The quartzite is a white, fine, granular variety, containing a little mica. Coarse gneiss outcrops again farther up the grade; at the top it becomes finer, carrying some hornblende, and alternating with strata of fine mica schist; dip northeast. The gneiss often becomes granitoid. The lamination has no constant direction, and resembles a flowage structure. This granitoid gneiss extends to within a mile of Julian, when there is quite a sharp transition to a gneissoid mica schist. That gives place to a fine schist, and a quarter of a mile west of Julian to a pearly hydro-mica schist. The schists strike north 20? to 30? west, dip 70? northeast. At Julian the rock is a dark, thin-bedded mica schist, usually termed a slate. There are also dark felsitic rocks and some gneisses. The belt of dark slaty mica schists is about half a mile wide. Toward the Balkan Mountain the rocks become more gneissoid. This mountain seems to be formed wholly of gneiss and mica schist. In some places the rock is nearly massive, and contains a large amount of quartz.

The rocks forming the mountains near the road from San Felipe to Vallecito are nearly all gneissoid. The real desert begins on leaving San Felipe Valley. The road extends southeast for 5 miles and then turns southwest, descending a narrow, rocky gorge to the head of Vallecito Creek. Near where the road turns to the southwest, the gneisses are cut by innumerable dikes of coarse granitic composition. Many of these run parallel, cutting across the strike of the gneisses, and give the appearance of a bedded formation. In the ca?on, before reaching Vallecito Creek, mica schist appears. It is bent and twisted into every conceivable direction, and varies exceedingly in structure and composition in the course of a few feet. The dip is northeast, and often at a small angle. The granite dikes often carry garnets, being quite similar to those between Julian and Banner. They were probably intruded after the eruption of the granite, and the related metamorphism.

At Mason's granite and gneiss both appear as intrusives in the schists, and are themselves cut by coarse dikes similar to those described. Between this point and Banner, in a direct line, gneiss is the prevailing rock. The high mountain east of Banner is more granitoid.

There is a sandy valley of considerable extent about Mason's; eastward a low ridge is crossed, and the road descends to Vallecito Valley between barren granite mountains, gradually descending until the open desert is reached. When the granite is hard these mountains are very rugged, but in places they are covered so deeply with soft, decomposed material as to closely resemble the Tertiary deposits farther east. The mountains often show pale purple to brown tints. On examination they appear to consist of a white granite, which has been so shattered as to break up into pieces, averaging not over 2 inches in diameter. This rock presents a very similar appearance for miles, particularly on the north side of the creek.

At Palm Springs the soft clay beds of late Tertiary age begin to appear. They dip in all directions, though that to the south and southwest is the most common. Toward Carrizo Station these are often covered by granitic detritus. The Tertiary beds widen out where the road strikes Carrizo Creek, and at Carrizo Station they have a width of nearly 10 miles. They rest against a granite range north of the creek and south along a long ridge which terminates in Carrizo Mountain. They also extend a long distance up Carrizo Creek. Four miles below the station harder sandstones and strata of shells cap the clay hills. This shell layer near the creek is 10 feet thick and contains pectens and oyster shells, belonging to the Miocene-Tertiary. The clay hills which surround Carrizo Station form a veritable Bad-Land. They show many different colors, and are perfectly devoid of any vegetation. They have been eroded into a most confused network of hills and ca?ons, and are so soft that it is difficult to travel over them. Six miles below this station and a mile north of the creek there rises a rugged granite range, facing the open desert. It rises from the desert quite precipitously nearly 2,000 feet, but blends westward into the ridges which run east from San Felipe. The granite is coarse and deeply decomposed. Sharp, angular grains of quartz stand out so prominently as to tear anything with which they come in contact. The thin-bedded shell strata rest against the slopes of the mountain, and near the southern end rise against the eastern slope at a very high angle in sharp, jagged points. These strata rise above the granite ridges at the point where they occur, and dip fully 70? to the east. Resting on the summit of this granite ridge, and immediately west of the steeply inclined and jagged points of the Tertiary strata, is the southern outcrop of a bed of coarse, hard sandstone, which rises along the summit of the ridges to the north and dips west, extending down the western side of the range for a thousand feet or more, dipping at an angle of about 30?. This sandstone outcrops along the crest of the ridge for nearly a mile. It is, however, not absolutely continuous, the granite rising through it in places. Near the southern end it is so highly metamorphosed as to be with difficulty distinguished from the granite at the contact. In fact, the two formations have become so intimately united, that a fracture of the granite made near the sandstone, instead of stopping at the contact, extends into the sandstone, so that the two rocks break off together. The contact is so exceedingly irregular that it seemed at first sight as if the sandstone had been intruded by the granite. Deep, narrow crevices extend into the granite, and are filled with sandstone. Some granite bunches are almost inclosed in the sandstone. The most interesting feature of this sandstone is the presence in it of an abundance of well-preserved corals of a type fully as old as the Cretaceous. Fragments of two species of a large oyster and poorly preserved specimens of univalve and bivalve shells are also abundant. There are at least two species of coral, many specimens being at least a foot in diameter. The sandstone is literally filled with them toward the southern portion of the outcrop. They also extend down into the crevices and cavities in the granite. The sandstone shows somewhat less metamorphism toward the north, where it contains some strata of pebbly conglomerate. The granite is intersected by many veins of coarsely crystallized feldspar and quartz. From these veins many of the pebbles in the conglomerate have been derived. At the highest point of the ridge the sandstone has the greatest thickness. Here it is broken up into great blocks 15 feet square, piled in the greatest confusion, as if by an earthquake. One great mass overhangs the almost precipitous granite escarpment at an elevation of 1,000 feet above the desert. Many fractures extend from the sandstones through into the granite. The sandstones, as well as the granite mountains north, have been baked a dull red color by the intense heat of the sun. To account for the peculiar position of this sandstone, as well as the steep inclination of the Tertiary beds at the southern end of the mountain, we must suppose that an extensive fault has taken place along the edge of the range facing the desert. The general inclination of the Tertiary beds to the west and southwest is also evidence of an uplift along this line.

Carrizo Mountain was ascended from the north by following up a wash through the clay hills. At the foot of the mountain there is a small outcrop of ancient volcanic rock greatly altered. This rock rests against the limestone which forms a large part of the north end of the mountain. The limestone is crystalline in every portion. The strike, as well as that of the schists and quartzites by which it is inclosed, is north 30? to 40? west, dip 75? to the southwest. The color of the limestone varies from white to streaked and variegated. It was carefully examined for fossils, but no traces of them could be found. The limestone is, however, filled in many places with the holes of borers, and one small incrusting coral and one barnacle were found. The elevation of the north peak is 1,700 feet, and these were found nearly at the top. Everything points to a great elevation here in times so recent that the atmospheric agencies have not yet had time to remove the surface exposed to the ocean waters. Another factor enters into this time computation, however, and that is that in this climate, where the rainfall is so slight, a great many years are required to effect slight changes. Toward the south peak the rock is almost wholly micaceous and quartzose schists. Judging from the great amount of metamorphism shown by these rocks, fossils, if they ever existed, must have been destroyed. At various points on the northern end of the mountain are horizontal deposits of a soft, shaly sandstone full of fossils, similar to those found north of Carrizo Creek. The corals are very large and perfect. Some nearly entire specimens of large oysters were also obtained, but most of the bivalve shells are represented only by casts. With all the exploration which has been done, it seems probable that these beds have never before been seen.

Professor Blake, geologist of the Pacific Railroad Survey, passed up Carrizo Creek in 1853, but, from the statements made, it seems his observations were confined to the immediate vicinity of the road. His is the only geological party that has visited this region up to the present time. The vicinity of Carrizo Mountain is a favorite one for prospectors, and every winter it is visited by a number of parties. As yet no important discoveries have been made, and I cannot say that I think the region is a favorable one. Silver has been reported from the southern slope of Carrizo Mountain, and at one time there was considerable excitement. The mountain, though formed wholly of metamorphic rocks, does not appear to have been mineralized to any extent. Only one dike was seen on the mountain, and that was of a coarse, granitic nature.

There is not the slightest doubt as to the presence of a non-conformity between the Miocene-Tertiary and the coral-bearing sandstones. Specimens of the coral were sent to the National Museum, and were pronounced similar to some from the lowest Cretaceous of Texas. As to the age of the limestone and associated metamorphic rocks, they are unquestionably Carboniferous or older. A float piece of silicious limestone was found containing some shells, but no opportunity for their investigation has yet occurred. The Tertiary beds are covered, wherever any of their original surfaces yet remain, by a great variety of washed bowlders.

With regard to the structure of this eastern slope of the Peninsula range, I can hardly agree with the views before expressed, that there are to be seen here evidences of an enormous fault, to which the steep escarpment toward the east is due. The eastern side of the range, so precipitous in places, has been compared to that of the Sierras in structure and general features. It is true that this descent is very abrupt in places, but in others it is almost as gradual as the western slope. For instance, the gradually descending ridges which extend east from Banner for nearly 30 miles, show no indication of any fault, save at the mouth of Carrizo Creek, where there has undoubtedly been a fault of considerable importance. The very abrupt descent east of the Balkan and Laguna Mountains is due solely to enormous erosion, for both north and south ridges extend past them for many miles into the desert.

The San Jacinto Mountains also send out long arms into the desert, and below the boundary Signal Mountain and a connecting range seem to be merely a spur of the main system. The rocks of the metamorphic belt at Julian and Banner, and farther south, dip to the northeast, indicating a great fold rather than fault, with the most strongly pronounced intrusive granites and diorites at some distance on each side.

It is not generally known that an ancient auriferous gravel channel exists in the county. It begins about a mile north of the old stage station, and 3 miles west of Ballena Post Office, where there rises a hill shaped like a whale's back , covered with washed gravel and bowlders. The main portion of the channel which has escaped erosion begins south of the stage station, capping a hill which has an elevation above the sea of 2,400 feet, being a little lower than the so-called Whale Mountain. The gravel is 50 to 100 feet thick, and has a width of 2,000 feet or more. It rises 300 to 500 feet above the valleys and ca?ons on its sides. It extends in a direction a little south of west for about 4 miles, terminating on the south of Santa Maria Valley. A granite ridge runs 2 or 3 miles farther in the same direction, probably preserved by the gravels, which are now gone. A pretty valley, a mile long, has been eroded in the eastern end of the gravels, down to the underlying granite. Placer mining has been carried on for years here in a small way by Mexicans. Gold is said to be scattered everywhere through the gravels, which are often very firmly cemented. Lack of water, for the ridge is higher than any of the surrounding country, has prevented work on a large scale. Lately a mining district has been organized, and it is proposed to bring water 7 miles in pipe. In the gravels are washed bowlders, many of them being 2 feet in diameter and well polished. The remarkable thing about them, however, is that they are nearly all porphyries. The most abundant is a red feldspar quartz porphyry. Quartzite bowlders of all colors are numerous, and there are a few of the basic diorite so common in portions of the county. Garnets are said to be very abundant in the gravels, and many bowlders of a schist carrying them are also present. The matrix of this rock could not be made out in the field; it is very tough and heavy, and has never been seen in place. The red porphyry bowlders resemble those on the mesa farther west, but have never been found in place. Never, in the mountains east or north, has porphyry of this kind been seen, either by myself or described by others. From the old stage station the upper course of the stream was north and south as far as it can be traced. There are indications that one branch extended easterly toward Julian. These gravels appear on a hill surrounded by deep ca?ons, about 2 miles east of the top of the grade above Foster's. At the top of the grade the hills on the west are flat-topped, and covered with gravels to a depth of 150 feet. These have much the same character, and probably belong to the same channel. More investigation is needed to determine whether the course of the old stream was down toward the San Diego River, in Cajon Valley, or west toward the high mesas south and southeast of Poway Valley. It seems probable, however, that the stream flowed west, and that the mesas have been formed partly from the bowlders which they brought down. This mesa, as well as the gravels at the head of the grade, has an elevation of 1,500 feet. The source of the porphyry bowlders and the garnetiferous schists of this old river is a matter of great perplexity. The gravel deposit has every characteristic of an old river channel, and not that of an elevated arm of the sea; besides, the presence of gold in the gravels indicates their derivation from the country farther east. The gold may have been derived from Julian or Mesa Grande, or some more remote point. The river must have flowed across the gold belt, but then the question arises, how could a river of such magnitude have existed so near the summit? The only way out of the difficulty is to suppose that a great uplift has taken place along the crest and western slope, coupled with an enormous amount of erosion; and that this stream once, before this great change took place in the configuration of the country, headed many miles to the northeast, far beyond the drainage of the western slope. The bowlders consist largely of hard rocks, and are very smoothly rounded and polished, indicating that they have been transported a long distance, and subjected to attrition through a protracted interval. It is quite possible that this river emptied into or near San Diego Bay, and that the immense beds of bowlder conglomerates about the bay owe their formation largely to this river action.

The first outcrop of crystalline rocks in Mission Valley is about 3 miles above the old Mission, where the San Diego River enters a ca?on. It is a volcanic tufa, consisting of grayish to greenish fragments of a fine-grained rock imbedded in a brown matrix. This has a width of about half a mile. Along the ca?on, dikes of a greenish amygdaloid have been intruded in the rock, and are particularly numerous north of the river. One of these dikes in the ca?on was observed to be amygdaloidal in the center. Farther up the ca?on there is a great variety of tufas. The first contains feldspathic and hornblendic fragments nearly blended in a base consisting of crystallized feldspar and dark chloritic particles. Above this is a dike of brownish crystalline rock, much altered; the only distinguishable mineral being feldspar, in small crystals. Then follows another tufa, with nearly blended micaceous fragments. The next rock is a fine crystalline one with very regular bedding planes, a foot or more thick; dip 30? to 40? southeast, strike north 35? east. Then follows a dark, aphanitic, structureless rock for some distance. At one point a branching dike of almost pure feldspathic material spreads out into this aphanitic rock in radiating arms. Apparent bedding planes run through them, as well as the country rock, showing that these planes are not those of sedimentation, but are due to some secondary cause. These rocks occupy the ca?on for 1 1/2 miles, and are all undoubtedly of volcanic or intrusive origin. A series of rocks of metamorphic origin outcrops a thousand feet along the ca?on. The first of these is a micaceous felsite. That is followed by fine-grained granitic rocks carrying garnets, and this by a hornblendic felsite. The latter finally becomes mixed and blended with a coarse micaceous diorite, containing a glassy feldspar. This rock is the chief one exposed through the ca?on. It has granitic and syenitic facies. The tuffs exposed at the mouth of the ca?on extend in a direction a little east of south for 3 miles, until covered by the mesas which extend west from Cajon Valley. They show a comparatively uniform character, the fragments being generally nearly blended. The ridge which these rocks form is separated from the granite by an elevated mesa a mile wide. The tuffs are exposed along Chaparral Ca?on to within 2 miles of the mission.

The granite ridge at the lower end of Cajon Valley does not extend more than 2 miles north of the ca?on, when it becomes covered with bedded deposits and bowlders of late Tertiary age. Granite does not appear in Sycamore Ca?on until the northeast boundary of the Cajon grant is reached. High hills of gravel and bowlders lie east of the ca?on and extend toward Foster's. The main body of granite is met at the head of the ca?on. It extends along the east side of the road to Poway Valley. Bunches of dark, coarse diorite occur in it in many places. The gravel mesa south of Poway Valley has an elevation of 1,200 feet. Small areas of gravel also remain on the hills northeast of the valley. The granite ridge, flanked by porphyries, does not outcrop very prominently south of Los Pe?asquitos Ca?on. The ridge southwest of Poway Valley seems to be formed largely of gravels, rising 1,500 feet.

The usual brecciated tuffs outcrop in the gulches and along the creek just above Los Pe?asquitos ranch house. They appear along the old road to Escondido for 2 miles. A body of chloritic granite appears in the center in the form of a long dike, extending from the Pe?asquitos Creek a mile or more north of the road. Toward the east the breccia becomes finer and almost loses its fragmental character. Between this formation and the granite a dark micaceous felsite, probably metamorphic, outcrops. The fragments in the tuff are diabasic at times and at others largely petrosilicious and feldspathic. The crystalline rock on the east is, perhaps, more nearly diorite than granite, as the feldspar is chiefly a glassy one. Black Mountain is formed of this dark breccia, while the high range of mountains which rises on the north and extends northwesterly between San Bernardino and the ocean, is formed partly of granitic rocks and partly of the tuffs and porphyries, the latter lying on the west.

A rolling, hilly country, containing much good land, stretches north toward Escondido. Remnants of the mesa conglomerates remain in places on the eastern edge of the Pe?asquitos grant. The granite is coarse and rises in huge, rounded knobs along the road. A little south of San Bernardino Post Office there rises a conical peak of micaceous diorite. A somewhat similar rock, but more diabasic in appearance, forms the mountain immediately west of the Post Office. This formation extends northwesterly for several miles, having a width of about a mile. The rock over much of this area closely resembles the gabbros and olivinitic diabases from the southern part of the county. It is penetrated by dioritic and granitic veins, in which the structure is often pegmatitic.

At the point where the road stops at the entrance of the ca?on of Diablo Creek, this basic formation is replaced on the west by a massive, jointed quartz rock, containing a little feldspar and chlorite, and in places becoming granitoid. It often has a fragmental character, with the quartzose bodies imbedded in a matrix more granitic, or simply darker and chloritic. This rock is quite uniform for 3 miles down the ca?on, quartz being the predominating constituent. It is very probable that this represents an original sedimentary terrain. It is followed on the western slope of the range by the dark tuffs before described. Here the matrix is often porphyritic, with a fluidal structure. Portions are real porphyries. A mile east of Olivenheim it resembles diorite porphyrite. The last exposure seen on the west was of the usual tufaceous character. This formation narrows northward, and on the road to San Marcos shows the width of a mile.

Northwest of San Marcos there is a large body of metamorphic rock, chiefly felsite schists and feldspathic quartzites. These extend in a northwest direction toward Buena Vista, but there are not many exposures. Dark diorite outcrops south of Buena Vista, and extends west for a mile and a half, when it sinks under the Tertiary deposits. The last outcrop seen was a dark micaceous diorite. A mile west of this point there is quite an outcrop of diabase containing an excess of dark feldspar. The sandy clays extend west from this point to Oceanside. Near Buena Vista station the diorite is impregnated with green copper carbonates, and a considerable amount of work has been done, but evidently no paying bodies of ore were found. Syenite outcrops near Kelly's ranch house, and in the hills east. The crystalline rocks come nearer the ocean here than at any other place in the county.

Between Escondido and Moosa Ca?on, granites, with bunches of dark diorite, are the only rocks seen. A broad, sandy valley extends up San Luis Rey River to within 5 miles of Pala, when the high granite mountains close in, forming a ca?on. The valley widens at Pala, and for many miles a broad, sloping deposit of bowlders and gravel borders the river, and rises high against the foot of Smith's Mountain. It is often 2 miles wide and represents a great amount of erosion. A mile northeast of Pala is a high hill of diabase, similar to that in the southern part of the county. On the eastern slope of this hill is an enormous pegmatite vein, carrying a very interesting set of minerals. This vein is twenty or more feet wide, and dips west at a small angle. There are masses of great size of almost pure mica and feldspar, or quartz and feldspar--in the latter case very fine specimens of graphic granite have been formed. Near the southern end of this vein is a deposit of lepidolite mica, 10 feet thick at the widest part, and appearing in detached bodies for several hundred feet. It is fine-grained and shows a pale purple color. In places it is pure, in others filled with large radial aggregates of pink tourmaline . Some of the aggregates are a foot across, others are long and slender, with arborescent forms. North of the main deposit it is found in quartz in fan-shaped aggregates, the crystals being more than a foot long, but greatly decomposed. Black tourmaline is abundant in the pegmatite surrounding the lepidolite, but in poor, brittle crystals. Green tourmaline is present in places in the form of minute grains. Garnets are also to be found in places. The vein as a whole is inclosed in the diabase.

The western end of Smith's Mountain shows many bodies of dark dioritic rocks. The major part of the rock is, however, gneiss and mica schist, all very easily decomposed, leaving an immense amount of bowlders and gravel along all of the gulches. Mica schists cover an extensive area along the southern slope of Smith's Mountain, on the Pauma grant. These are undoubtedly a continuation of the schists of the Julian belt, but carry no minerals. The belt of schists extends nearly if not quite through to Julian. Warner Valley is located at the head of San Luis Rey River. It is entirely surrounded by granite mountains. There is not as great a variety of intrusive rock here as in other parts of the county.

Point Loma forms a peninsula, the greatest length of which is about 6 miles, and greatest breadth, 1 1/2 miles. During Quaternary times it was an island, but owing partly to an elevation of the coast, and partly to the detritus brought down by the San Diego River, it becomes joined to the mainland. It rises 400 feet in almost perpendicular cliffs at its southern end, gradually lessening in height toward Old Town. The rock of which it is formed consists of soft shales and sandstones, the latter often quite consolidated. The strata at the extreme end of the point dip south, but in a short distance turn and maintain a quite uniform dip to the northeast nearly the whole length of the peninsula. This abrupt elevation evidently owes its origin to a fault accompanied by an uplift, and not to erosion. Beginning at Ocean Beach, and following along the base of the cliffs to the light-house, hundreds of faults can be counted. Near Ocean Beach fifteen can be counted in the space of 200 feet. The direction of these faults is nearly at right angles to the strike. The most of them are nearly vertical and clean cut. The throw varies from a few inches to many feet. Sometimes the north and sometimes the south wall has risen. An interesting overthrust fault is exposed in the cliffs north of Ballast Point.

A conglomerate of late Tertiary age overlies the Cretaceous rocks unconformably on the extreme end of the point. These conglomerates are firmly cemented and form high cliffs. They dip at an angle of 30? to the southeast. The pebbles are in part derived from the sandstone of the point, and in part from the crystalline rocks east of the mesa. Near the top of this conglomerate are immense, semi-angular bowlders. These have rolled down to the beach and are strewn around the end of the point. Many large ones are to be found a little west of the new light-house, but the greatest of all is on the eastern side. It is fully 10 feet in diameter, and formed of the same kind of rock as that on which the mesa rests 8 miles east of San Diego, viz: a green volcanic tuff. It is a very interesting question as to how these immense bowlders have been transported so far and left in the beds near the top of the cliffs. I can account for it only by supposing that the point with relation to the country back of San Diego was several thousand feet lower at one time, and that a river of great volume, flowing over a steep channel, entered the bay at this place, depositing irregular beds of bowlders. This old river may have been the same one which formed the auriferous gravel channel before mentioned. The fault planes on Point Loma extend through the conglomerate beds, indicating that the elevation took place after the bowlder beds were formed.

In a bluff at the northeastern end of the Point Loma peninsula, west of Old Town, there is a stratum of calcareous sandstone, carrying many fossils belonging to the Eocene, or lowest Tertiary. The strata dip northeast at a small angle, and though they cannot be traced continuously west to the outcrops of Cretaceous rocks, yet from the fact that they have the same dip, leads me to the belief that the two beds are conformable. This younger deposit corresponds to the Tejon, or Division B, of Professor Whitney. Everywhere in the State there exists the closest relation between the Chico and the Eocene. Here on Point Loma they are undoubtedly also conformable, but each is distinct as regards its fauna, for they are separated by nearly a thousand feet of unfossiliferous strata.

Coal is reported to outcrop above the water at very low tide somewhere along this stretch of cliffs. It of course must occur in strata of Tertiary age. The coal vein struck in a boring at La Jolla must be Cretaceous. About 3 miles up the coast from La Jolla, there appears a dike of basalt cutting the Tertiary shales. At high tide it is nearly covered by the ocean. It has a course about 30? east of north, and stands vertical. It begins on the north, close in under the high cliffs, but does not extend into them, the only signs being a fault in line with the dike. It is not more than 2 feet wide at the northern point where it is exposed. It is dark and compact and so decayed as to be easily taken for an argillite. The walls of the dike are very smooth and regular, except near the southern point, where it runs into the water. Here it swells to a width of 30 feet. The edges of the dike are compact, while the vesicular portion is in the center, where there is often a flowage structure developed. The central portion is more or less laminated parallel to the wall, and thus is generally a well-pronounced columnar structure developed the whole width. The columns lie horizontally across the dikes and are 12 to 15 inches in diameter. The cavities are wholly or in part filled with calcite. Metamorphism of the adjoining shales is apparent for 2 feet away, but the sea water has so decomposed the shale that it is not so strongly marked as it would otherwise be. The dike projects above the water in places for a distance of 1,000 feet, making its total exposed length about 1,800 feet. In the mesa southeast of Rose Ca?on, and along the San Diego River, and back of San Diego, the formation belongs almost wholly to the late Tertiary. It is not certain whether the Miocene is present or not. A number of Miocene fossils have been found in the county, but perhaps the most of them have come from Carrizo Creek. Many fossils are given in Dr. Cooper's list, as being found in the Pliocene of San Diego, which are more characteristic of the Miocene in other localities. I see no reason for doubting that the Miocene is present, but so intimately related to the Pliocene as to be stratigraphically inseparable from it. In the region between Rose Ca?on and the northern boundary of the county, I do not know that Miocene fossils have been found, but in Orange County they are well characterized.

The region occupied by San Diego Bay and the mesa back of it is composed, as far as we know, of Quaternary, Pliocene, and perhaps Miocene strata. Sandstones characterize the lower formation, and loosely cemented conglomerates, increasing in thickness toward the mountains, the upper. These were deposited in a sort of basin, of which Point Loma and the Soledad hills formed the northern and western borders. Many oscillations of level have taken place, the most recent being an elevation of 40 feet, shown by an old beach line on Point Loma. The shells in this beach are the same as those now living in the adjoining ocean. It is a peculiar fact that the mesas are slightly higher near their western terminations than farther east, indicating a recent uplift along the ocean. Water is scarce through this mesa formation. At the end of Point Loma there is a strong sulphur spring exposed at low tide. Its waters may possess medicinal properties, and should be examined.

On the southern shore of False Bay is a large deposit of calcareous tufa. The central portion is quite pure and a number of feet thick; just how thick is not known. It extends along the shore some distance, and often contains bowlders and shells. This is evidently a deposit from some former spring of great size. The mesas lying west of the extensive volcanic tuffs have been derived largely from the decay of the latter, and have heavier soil. North of Soledad they become more sandy, and maintain this character to the Santa Margarita Creek. This light soil, however, is being successfully cultivated in many places and for certain kinds of fruit, without irrigation. The surface of the higher portion of Point Loma, as well as some of the mesas north, is covered with spherical nodules, a quarter to half an inch in diameter, of sand cemented with red oxide of iron. These literally cover the ground in places so that it is difficult to walk. The origin of these at first seemed very puzzling, but on examining the face of a cliff on the top of which these were found, an explanation was reached. They were seen to grow smaller away from the surface of the ground until a depth of 2 feet was reached, when they cease. Their formation is due to the oxidation of the iron in the sandstone, and its segregation in little nodules on the same principle as the formation of concretions.

The cliffs of Eocene sandstone along the ocean grow gradually lower north of Soledad Ca?on. At Encinitos the cliffs are higher again and for a short distance the strata dip south, but toward Oceanside they resume the northerly dip and disappear several miles south of that place. Faults grow less numerous the farther we get from Point Loma. The mesa is low about Oceanside; it was either never very prominent or else the erosion has been great.

On the north bank of the Santa Margarita Creek, near the ranch house, is an interesting cliff of Quaternary sands and gravel, showing a number of strata deposited under different conditions on an old beach.

The Tertiary beds north of the Santa Margarita Creek are very different in outline from those south. Instead of their extending in a gradual slope from the older mountains to the ocean, there arises in them, near their western border, a range of mountains, known as the San Onofre Mountains. These extend parallel to the ocean at an average distance of 2 miles. They rise north of the Santa Margarita Creek and extend to the San Onofre Creek. They have a gradual slope on the west, rising to an elevation of 1,400 feet, but are quite abrupt on the east. Los Flores Creek cuts through the southern end of this range, showing that while the soft, clayey sandstones between it and the Santa Margarita Mountains slope only 5? to 10? southwest, the rocks of the range itself dip west at an angle of 35? to 40?. The formation is a breccia, the fragments of which are argillitic, micaceous, and hornblendic schists. Some of these fragments are of great size, one bowlder of hornblende schist being 8 feet in diameter. Pebbles of white quartz and other hard metamorphics are also present. The soft, coarse sandstone in which the fragments are imbedded show no traces of any granitic matter. The range was ascended 2 miles north of the Los Flores ranch house, and found to consist entirely of fragmental schists, such as those mentioned, dipping southwest at an angle of 45?. The mountains were also climbed at their northern end, near San Onofre Creek. Here there is a very abrupt escarpment on the eastern side. The strata dip toward the ocean at a high angle, while the irregular hills and ridges of soft, light-colored sandstone lying east toward the Santa Margarita Mountains are nearly level. After a careful study of the range the conclusion was reached that its origin was due to a great fault, represented by the very abrupt eastern slope, tilting the elevated portion to the west at a high angle. I believe that this fault took place after the deposition of the Tertiary strata. As far as my observation went the Tertiary beds on the east do not rise to meet the San Onofre range, as they would to a certain extent if it were present when they were deposited; on the contrary, they dip toward it. West of the range the ocean is bordered by very high cliffs of Quaternary clays, and in only two or three places do the Tertiary rocks outcrop. Small patches of sandstone outcrop near the road at the western foot of the mountains; they also dip west at a high angle. Many of the fragments at the northern end of the range show their derivation from a massive crystalline rock. The hornblende schists are generally garnetiferous. Blue glaucophane schists are also very common. South of Mission Viejo Creek, Orange County, there is an outcrop of rock, apparently in place, which greatly resembles these schists. Good outlines of these mountains, indicative of structure, can be seen to great advantage from the San Luis Rey Mission. On the west slope of the San Onofre Mountains, 4 miles north of Los Flores, is an outcrop of a garnetiferous hornblende schist, which certainly appears to be in place. This rises 10 feet above the side of a gulch, and is fully 20 feet across. One mile north and in line of strike with the last is another outcrop of similar rock, which is so large that it certainly seems that it must be in place. The only point north of the San Onofre where this breccia appears is at Arch Beach, Orange County. The Santa Margarita Mountains are bordered by very extensive bowlder deposits, which rise as high as 1,500 feet on their western side.

The topography of the northwestern part of the county between Temecula, Elsinore, and the ocean, is very complicated. This section is occupied by rugged, brush-covered mountains and narrow, deep valleys, with the exception of the Santa Rosa plateau, where the configuration of the county has been entirely changed by extensive lava eruptions, stretching over a distance of 10 miles. This mountain region narrows toward the north to form the Santa Ana range. The variety of rock formations is very large. The northern portion is unsurveyed. On the south are the two large grants, the Santa Margarita and the Santa Rosa. Between these lies De Luz Valley. The Santa Margarita Mountains extend north and south, forming the eastern borders of the grant and rising to an elevation of 3,100 feet. The granite of the region about De Luz Valley is far from being homogeneous. A part of it is undoubtedly intrusive, and a part may represent an original sedimentary formation. Bedding planes are present in much of this supposed metamorphic granite, but generally no schistose structure. The presence of the De Luz warm springs is perhaps due to a dike of dark, aphanitic diorite, which has cut through the granite in an irregular manner. A very interesting breccia outcrops in the bed of the creek below the warm springs.

The fragments are chiefly granite and an aphanitic rock. They are quite angular, showing only a slight rounding of the corners. Some of the larger fragments are a foot in diameter. The boundaries are very irregular. Long arms of the inclosing granite project into the breccia. The base or matrix varies from a coarse syenitic rock to an aphanite. It often seems to present a blending of different kinds of fragments. Besides the large inclusions there are scattered through the matrix small angular pieces, which are so regular in outline and distribution as to give to the rock the appearance of a porphyritic structure. The granite in the hills west of the valley contains much biotite and quartz in long, rounded grains, presenting a pseudo-porphyritic aspect. This appearance is characteristic of much of the granite of this section. Imbedded in the granite are masses of dark aphanitic rock. The lower granite hills are covered with considerable sandy soil. There are isolated peaks of a coarse white granite, much like that of the Sierra Nevada, arranged in some sort of regularity in north and south lines. One rugged peak of this coarse granite rises 2,500 feet west of the valley. At the northern end of the valley the bedding planes in the finer grained granites are very regular; strike north 45? west, dip 65? southwest. There is, however, no schistose structure present.

A half mile above the warm springs is another conglomerate or tuff, which seems so related to the granite that the latter must really be eruptive. In a little valley southwest of De Luz and just east of the Santa Margarita grant there is a large outcrop of diabase. It has been intruded in a fine-grained, jointed granite. Farther down the valley, on the road to De Luz Station, there is a narrow outcrop of black quartz feldspar porphyry, followed on the east by a dark felsitic mica schist; strike northwest, dip 60? southwest. Immediately west of the deep canons which lead down to De Luz Creek, rises the Santa Margarita Mountains. They consist of a fine-grained granite, verging at times on a quartz porphyry. The main crest is 2 miles long, the highest peak of which is nearly 3,200 feet. The rock is perfectly massive, but shows apparent bedding planes; strike north 30? west, dip 80? northeast. The porphyritic facies of this formation occur in the western slope. On the western slope of the main range, at an altitude of 2,500 feet, there is a plateau-like area of a thousand acres or more of fine grass land. It is dotted with white oak trees. The western slope of this plateau is very abrupt and brushy. The formation is partly porphyry and partly dark diabase and diorite. The most interesting fact connected with the Santa Margarita range is the occurrence of sandstone at an elevation of 2,600 feet on its western slope. The sandstone occupies very limited detached areas in the heads of the gulches, and is evidently the remnant of a once far more extensive formation. The sandstone is largely kaolinitic, and has evidently been derived from the adjoining rocks. At the foot of the southern end of the mountains appears very quartzose rocks, probably of metamorphic origin. Coarse granite has been intruded into them in small bunches. Granite extends southwesterly in the form of a wedge as far as the Santa Margarita ranch house, and is there covered by modern deposits. Between De Luz and Fallbrook the country is gently rolling, with knobs of granitic rocks projecting here and there. About Fallbrook, and for some distance east, the granite does not outcrop much, owing to its easy decomposition. A little east of De Luz Station is a small body of mica schist; dip 30? east, strike north 15? west.

The road from Fallbrook to Temecula leads through a long, narrow valley. On either hand rise high mountains of bare granite. Immense bowlders, 20 to 30 feet across, line the valley, having fallen from the cliffs. The granite here is a coarse rock, rich in biotite, and though great masses could be obtained free from checks, yet does not seem durable. The valley owes its origin to a difference in rapidity of decay along certain lines. On this section there appears no trace of the schist belt extending northwest from Julian. This coarse granite is undoubtedly intrusive and has cut it off.

A wholly different series of rocks is exposed in the Temecula Ca?on, not more than 2 miles north of the country just described. This ca?on is deep and rocky, taking a very direct course from Temecula to the ocean. At the upper entrance there is a narrow exposure of granite. This is followed by quartzite, dipping 45? southwest. The rocks shortly become massive and are replaced by dark syenitic ones with an excess of hornblende. Two miles down, granite appears for a short distance, and in it a quarry has been opened. The rock can be obtained in blocks of any size from great masses which have broken off and rolled into the ca?on. Gneissoid rocks soon replace the granite, and these are followed by hornblendic rocks, which vary from a schistose to a massive structure. In places they contain feldspar and pass into syenites; in others the rock is almost pure hornblende. The greater portion of these rocks are of metamorphic origin. The dip is generally vertical, strike east and west to northwest. The syenites are followed by mica schists, and these by coarse biotite granite about 5 miles above Howe Station. In the granite are many pegmatitic veins, carrying biotite, garnets, and tourmaline. Fine-grained granite, varying at times to syenite, forms the rock along the ca?on for many miles below this point.

Add to tbrJar First Page Next Page Prev Page

 

Back to top