bell notificationshomepageloginedit profileclubsdmBox

Read Ebook: Waterways and Water Transport in Different Countries With a description of the Panama Suez Manchester Nicaraguan and other canals. by Jeans J Stephen James Stephen

More about this book

Font size:

Background color:

Text color:

Add to tbrJar First Page Next Page Prev Page

Ebook has 1334 lines and 245410 words, and 27 pages

Speech on conciliation with America, Ibid., pp. 461-62.

The navigation had, however, been deepened in the interval for drainage purposes, largely at the expense of the Land Drainage Commissioners, which caused a considerable increase of traffic.

ENGLISH RIVERS.

One of the earliest pioneers of inland navigation was Wm. Sandys, of Ombersley Court, in Worcestershire, who, in 1636, applied for Parliamentary powers to make the river Avon navigable for boats and barges, from the Severn at Tewkesbury to the city of Coventry. Part of the work which was executed in pursuance of the powers so obtained exists to the present time. In 1661 Sandys sought for Parliamentary authority to make the Salwarp navigable from the Severn to his own town of Droitwich, and to make navigable the rivers Wye and Lug, and the brooks running into the same in the counties of Hereford, Gloucester, and Monmouth.

Our great rivers, the Thames, Severn, Trent, Ouse, &c., were the recognised means of transit long before the time of the Romans, who were so far advanced in inland navigation as to cut canals of forty miles in length, as instanced in the Caerdyke, between Peterborough and Lincoln , as also to build docks, as shown in the old dock walls, &c., still standing at the outfall of the Trym into the Avon below Bristol.

The Fossdyke navigation from Lincoln to the Trent is also of Roman origin, and probably an extension of the Caerdyke, on their route to York. Torksey, at the junction with the Trent, was a Roman town and fort, and continued possessed of many privileges, down to the Norman period, on condition that the knights who held it should carry the King's Ambassadors, as often as they came that way, down the Trent in their own barges, and conduct them to York. This is recorded in 'Domesday Book.' Itchin Dyke to Winchester was also cut by the Romans.

It is usual to date the first beginning of canal navigation in England from the time when Brindley constructed the famous canal between Worsley and Salford for the Duke of Bridgwater. This, no doubt, was the first important artificial navigation throughout. But Sandys had practically undertaken canal construction about a hundred years before. The Act of Parliament which sanctioned the various enterprises that he had projected, authorised him to construct new channels, and to set up, in convenient places, "locks, wears, turnpikes, penns for water, cranes, and wharfs, to lay timber, coals, and all other materials that shall be brought down;" to have and use "a certain path, not exceeding four feet in breadth, on either side of the said rivers and passages," for the "towing, pulling, or drawing-up of their barges, boots, leighters, and other vessels passing and repassing them, or any part of them, by strength of men, horses, lines, ropes, winches, engines, or other means convenient;" and "to dig, carry, trench, or cut, or make any trench, river, or new channel, or wharf," &c., after having arranged with the "respective Lords, owners, or occupiers of the said lands."

Sandys, however, did not succeed in carrying out the intended navigation between the cities of Hereford and Bristol as he proposed. He attempted to make the Wye navigable by locks and weirs on the pound-lock system, which did not suit its rapid current. The enterprise was accordingly abandoned, after a trial of several years.

In 1688 the project of making the Wye navigable was revived. It was now proposed to abandon the pound-lock system, to purchase and remove all the mill-weirs and fishing-weirs between Hay, in Herefordshire, and the sea, and to deepen the channels of the shallow streams. The weir-owners rose in opposition to these proposals, and for several years the subject was the occasion of a bitter controversy. When the Bill was applied for in 1695, the city of Hereford, and thirty-two parishes in the county, petitioned in its favour; while the towns of Ross and Monmouth, and thirteen parishes, petitioned against it. The Bill, however, ultimately became law, and although, owing to the uncertainty of its depth and current, the Wye was never adapted for regular navigation, it was so far improved that throughout the eighteenth century it was of great service to the county of Hereford.

One of the earliest to advocate river improvements in Britain was Andrew Yarranton, an original genius, who had ideas and plans quite a hundred years in advance of his times. He occupied himself with many different projects designed to effect improvements in means of communication, and in developing the resources of the country generally. At one time serving as a soldier, at another engaged in the manufacture of iron; now planning how to provide employment for the poor, and again studying how to bring about more economical processes of husbandry, Yarranton made a special hobby of the improvement of navigation, undertaking surveys of the principal rivers in the West of England at his own cost, and urging upon the people the importance of opening up the facilities of communication thereby available to them.

In 1665 Yarranton proposed to the burgesses of Droitwich to deepen the small river Salwarp, so as to connect that town, now an important centre of the salt industry, with the river Severn. He was offered terms to carry out his plans, but the offer does not appear to have been good enough.

Although the proprietors in what was called the "Old Quay Company" had obtained an Act of Parliament in 1733 for improving by weirs and cuts the rivers Mersey and Irwell, between Runcorn and Manchester, the first association incorporated for making a regular navigable canal in England was not till more than twenty years later, six centuries after the first canals in Italy and Flanders, and a hundred years subsequent to some of the chief canals of France being in operation. It is but fair to add that England carried the movement further than most other countries.

THE MERSEY.

On the Liverpool side of the Mersey there are sixty docks and basins of the ordinary type, having a total water area of 368 acres and 25 miles of quay berthing. On the Birkenhead side, there are 164 1/2 acres of docks, with 9 1/2 miles of quayage, three graving docks, having a total length of 2430 feet, and every facility for loading and unloading ships.

The total expenditure incurred on this enormous provision for shipping has been upwards of twenty millions, and the total annual revenue of the Mersey dock estate is about a million and a half sterling.

The entire length of the Mersey is 56 miles. For the first 37 miles of this distance, the river has a tortuous course, ill-adapted for navigation, and passes through an almost exclusively agricultural country. From Runcorn to the sea, the form of the river is that of a bottle, of which the wide expanse between Runcorn and Liverpool forms the body, and the narrow part opposite Liverpool the neck. Through this neck there annually passes nearly twenty million tons of shipping, including entrances and clearances.

The unassisted efforts of nature have hitherto maintained the navigable channels of the Mersey, so that the conditions of navigation remain practically uniform. The bar, however, is gradually moving in a seaward direction, while maintaining its general form and characteristics. In Liverpool Bay there is a great range of tide, which insures a depth of at least 30 feet over the bar once in every twelve hours, even on the lowest neaps. Some two or three million cubic yards of upland water every twelve hours are discharged into the estuary, chiefly by the Mersey and the Weaver, which, with 710 million cubic yards on a high spring tide, maintains the normal capacity of the estuary, and counteracts the process of silting. Some 17,300 acres of a deposit of sand in the estuary are above the low-water mark. Through this the upland water forms and maintains a channel in its course to the sea, and any serious exclusion of this tidal water would be likely to so far injure the sea channels as to interfere with the trade and shipping of the port.

The Mersey is the outlet for several important canal navigations, including the Weaver Navigation Canal, near Weston Point, the Bridgwater Canal at Runcorn, the Sankey Canal at Widnes, the Shropshire Union Canal at Ellesmere, the Leeds and Liverpool Canal at the Docks, and the Manchester Ship Canal, now under construction, at Eastham. The position of these several canals in relation to the river may be traced in a map accompanying a paper read by Mr. Lyster, the engineer, before the Institution of Naval Architects. These canals are important factors in assisting the growth of the trade of the Mersey. The Leeds and Liverpool is, however, the only canal that has a direct connection with the Liverpool Docks.

In Camden's time Liverpool must have been a very obscure place. The author of 'Britannia' dismisses it almost in a sentence, observing that "from Warrington, the River Mersey, spreading abroad, and straightwaies drawing in himselfe again, with a wide and open outlet, very commodious for merchandise, entereth into the Irish Sea, where Litherpoole, called in the elder ages Lipen-poole, common Lirpoole, is seated, so named, as it is thought, of the water spreading itself in manner of a poole."

With the exception of the Thames--which it rivals, and with which for a number of years past it has run a neck-to-neck race--the Mersey is, so far as its volume of business is concerned, the most important river in the world. This, however, is an attainment of comparative modern origin. The first wet dock was constructed at Liverpool, in 1708-9, on the site now occupied by the Custom House. In the latter part of the same century several other docks were constructed. The dock estate has now an area of 1078 acres, the whole of which is appropriated to basins, docks, quays, and premises worked in connection therewith.

THE WEAVER.

The history of the navigation of the river Weaver, which adjoins the Mersey in Cheshire, supplies a notable example of what may be made of an originally insignificant and tortuous stream in order to adapt it for the requirements of commerce. The river has been canalised between Northwich and Chester, twenty miles of the navigation being artificial navigation, and the other thirty miles being river proper.

In 1721 three Cheshire gentlemen obtained the first Act of Parliament for making the river Weaver navigable. The depth then provided for was only 4 feet 6 inches, and boats of more than 40 to 50 tons could not enter.

About the year 1760, the navigation was carried down so as to enable vessels to enter at nearly all tides, and in 1810 the river was further improved by the Weston Canal, which is four miles long, enabling vessels of much deeper draught to enter without navigating a dangerous part of the old river. This canal forms a junction with the Bridgwater Docks at Weston Point, and a dock was formed in connection with it so as to enable vessels to wait for the tide.

In 1830 the depth was increased to 7 feet 6 inches, with locks 88 feet long and 18 feet wide, capable of taking cargoes of 100 to 150 tons. There were at this time eleven single locks on the river, not including the entrances to the Mersey. About 1860, a second set of locks, having 10 feet of water on the sills, and 100 feet long by 22 feet wide, was placed by the side of the existing locks, and the number was reduced to nine pairs. The larger size, owing to the vessels being built almost to the shape of the lock, were capable of passing vessels with nearly 320 tons on board.

This continued until about seventeen years ago, when it was decided to replace these locks by some of very much larger dimensions, and also to greatly reduce the number. With this object, locks were built at Dutton and Saltersford near the site of existing locks, and of sufficient height of walls to enable the two ponds above to be thrown into one, thus doing away with the four smaller locks. The same has been done at Hunts, and, more recently, at Valeroyal, above Northwich. The locks at Dutton and Saltersford are entirely built of masonry, having limestone sills and rubbling courses, with the intermediate part sandstone. All the work on the river is of this description, with the exception of the Hunts and Valeroyal large locks, which are built of concrete.

When these improvements are completed there will be only four locks on the twenty miles of navigation, the larger of each pair of locks being 220 feet long, by 42 feet 6 inches wide, and having 15 feet of water on the sills. Most of the river is now dredged to 12 feet, there only being 10-feet bars at certain points. The ordinary width is about 95 to 100 feet at water level, and 45 feet at the bottom. More than a million tons of salt annually pass down the Weaver to the Mersey.

THE TYNE.

This noble river, from Newcastle to the sea, is one of the greatest triumphs of modern engineering. Good old Camden quaintly remarks, that "where the wall and the Tine almost met together Newcastle sheweth itself gloriously, the very eye of all the townes in these parts, ennobled by a notable haven, which Tine maketh, being of that depth that it beareth very tall ships, and also defendeth them, that they can neither easily be tossed with tempests nor driven upon shallows and shelves."

The Tyne Improvement Commission, chiefly under the presidency of Sir Joseph Cowen, have deepened the river to a uniform depth of nearly 30 feet, built training walls, dredged the bar, built new channels, and otherwise revolutionised the old order of things. The results have been extremely striking. In 1888 14,668 vessels, having a total tonnage of 6,734,000 tons, cleared from the Tyne ports; while 6093 ships, having 1,662,000 tons register, entered the same ports. The people of Tyneside are proud of their river, as well they may be.

THE RIBBLE.

THE SEVERN.

This famous river is navigable up to Welshpool, a distance of 155 miles by water, from the mouth of the Bath Avon river. The extreme branch of this river may be traced for about 45 miles above Welshpool, to Plinlimmon Hill, and numerous other branches extend for great distances into the country on both sides. The whole of this great length of navigation was, till lately, unimproved by art, the river having no locks, weirs, or other erections throughout its whole length, for surmounting the numerous shallows and irregularities which the current over variable strata had formed in its bed. The first or lowest 42 miles of this river, extending to the city of Gloucester, are very wide for a great part of the way, and have a most rapid tide; but the last 28 miles are so crooked, that ships are said to be often several days in passing it; on which account, a ship canal, calculated for vessels of 300 tons burthen, was in the year 1793 projected and begun between Gloucester and Berkeley, of 18 1/4 miles in length, for avoiding these 28 miles of the river. From Gloucester to Worcester the distance is 30 miles by the course of the stream, the rise in this length being 10 feet, or at the rate of 4 inches a mile; from Worcester to Stourport the distance by water is 13 miles, and the rise 23 feet, or at the rate of 1 foot 9 inches per mile; from Stourport to Bridgnorth it is 18 miles, and the rise 41 3/4 feet, or 2 feet 4 inches per mile on the average; and from Bridgnorth to the new town at the junction of the Shropshire canal, called Coalport, the distance is about 7 miles, and the rise about 19 feet, being a rate of about 2 feet 8 inches per mile. William Reynolds, the founder of Coalport, caused an account to be daily registered of the depth of the stream in the bed of the Severn at that place, between the 7th of October, 1789, and the 23rd of December, 1800, of which Mr. Telford has given the particulars, except on twelve occasions when the river had overflown its bounds and covered the usual marks , the intervals of frost in which the river was frozen over, and for three short intervals, when, unfortunately, the experiment was by some accident suspended. During all the months of January, in the above period of eleven years, ending the 6th of October, 1800, the river does not appear to have exceeded the depth of 16 feet, that being the greatest depth at any time recorded; and several times, when no depths are inserted to the great floods, it is stated in the table that the water was above all the marks. Besides these, there were thirty-two smaller floods, or times when the water had risen, and was falling again for some days after; the highest of these had a depth of 13 feet , the lowest 4 feet, and the mean of the whole of these floods is 7 1/2 feet. In the months of February there were two of these overflowings, one of which followed a frost and continued for five successive days: nineteen floods, the two highest of which were equal to 12 feet.

THE WITHAM.

On the Witham, for a distance of thirty miles, between Boston and Lincoln, the river is practically a canal. The tide is stopped by a sluice at Boston, and a weir and locks had to be constructed at Bardney and Lincoln. The inland water is held up to a constant height on the sill of this sluice by penstocks, for the purposes of the navigation. The navigation having been taken over by the Great Northern Railway Company, the works are maintained in efficient condition; but the obligation imposed by the original Act of holding up the water seriously affects the drainage. The river Slea, from Sleaford to the Witham, was made into a canal in 1792. The navigation on this river having almost entirely ceased, the company was dissolved by an Act of Parliament. The Bane, another affluent of the Witham, was also canalised, forming a navigation from the Witham to the town of Horncastle; but the dues obtained are insufficient to maintain the works in proper order.

THE NENE AND OUSE.

On the Nene, which is canalised from Peterborough to Northampton, the navigation is reduced to a few barges. The constant floods on this river are ascribed in a great measure to the defective condition of the works. The proprietors of the navigation, on whom was cast the duty of maintaining the river, no longer have the funds, and there is nobody to take their place. The same thing has occurred on the Ouse between Earith and Bedford.

THE TEES.

The improvements that have been carried out for the purpose of opening up the navigation of the river Tees, although less considerable than those carried out for some of the larger rivers of Great Britain, are yet entitled to take rank as among the most notable river engineering achievements of the century. They are also among the most recent. It was not until 1852 that the Act was passed creating the Tees Navigation Commission. At that time there were three or four channels in the estuary, all of them very shallow. The shifting sandbanks caused great trouble and not a little danger to navigation, and the depth of water near to Middlesbro' did not admit of the passage of vessels of large size. Since then, about twenty miles of low water training walls have been erected for the purpose of confining the navigable channel. The volume of water and its scour have thereby been much increased. The river has been continuously dredged in order to secure a depth of water that would allow of the passage of vessels of large tonnage into the Middlesbro' Docks. About 23 million tons of material have been dredged from the bed of the river, and the channel has been generally straightened and widened. Breakwaters have been constructed on both sides, one of them, called the North Gare, being about two miles and a half long. A remarkable feature of the work is that these breakwaters have been constructed of slag, obtained from the blast-furnaces in the neighbourhood. Some millions of tons of slag have been employed in this way, the ironmasters having paid to the Conservancy Commissioners a small sum for removing the slag, the disposal of which had been a great source of difficulty previous to this application.

As a result of the works that have been carried out for the improvement of the navigation of the Tees, the shipping trade of the river, and especially of the port of Middlesbro', has greatly increased. The main element in this development has been the growth of the iron industry; but the second element has undoubtedly been the increased facilities for navigation. The popular impression about Middlesbro' is that only a single house stood in 1830, where there is now a busy town of more than 70,000 inhabitants. This may or may not be a legend, but there is no doubt about the fact that in 1850 there were only from two to three feet of depth on the bar of the Tees, where it was possible to wade across at low water; whereas now there is about 20 feet of water, and a harbour of refuge has been provided in which ships can ride in safety whatever the condition of the usually stormy seas outside.

THE IRWELL.

This river has been partly canalised, in order to afford a means of communication between Warrington, Manchester, and other large towns, and Liverpool, but it was only adapted for light craft and has consequently fallen largely into disuse. The Mersey and Irwell Navigation was acquired by the Bridgwater Company, and has now, with the rest of the Bridgwater property, passed under the control of the Manchester Ship Canal Company.

THE WEAR.

In this chapter we have dealt with a few only of the more notable examples of river improvement in modern times. The list might be almost indefinitely extended. There is hardly a brawling mountain torrent between Land's End and John o' Groat's that has not been reclaimed, deepened, widened, or otherwise improved upon by the art and the genius of the engineer. Nor has the work been confined to modern times. The Romans are known to have constructed embankments for the control of British rivers during the period of their occupation, although for something like 1000 years afterwards their example was not followed. The engineers and the local authorities of the nineteenth century have done much to redeem this reproach. The improvement and conservancy of rivers have now been reduced to a science, founded mainly upon the following general principles:--

Our tidal rivers are undoubtedly one of the chief sources of our maritime supremacy. For this reason it is of the utmost importance that they should be kept in good repair, free from unnecessary obstructions, and well adapted to the purposes of navigation. As it is, however, this is not always the case. The chief reason for existing maladministration, where it exists, is the absence of a uniform system of control. The Thames, for example, has been hitherto controlled partly by the Thames Conservancy and partly by the Metropolitan Board of Works. The Great Sluice, at Boston, in Lincolnshire, was constructed in 1764 by Smeaton, for the purpose of stopping the flow of the tide in the river Witham, and converting the upper part of the river into a fresh-water canal as far as Lincoln. As, however, the control of the river is divided--one body dealing with the tidal part from the Grand Sluice to the sea, and the other with the canal and drainage of the land above--each opposes the schemes of the other, and the navigation has been ruined.

There is one course whereby this condition of things, where it exists, may be prevented. It has been suggested that a new Government Department should be created, with entire charge of and control over all estuaries and navigable channels, and presided over by a member of the Cabinet. The interests at stake are sufficiently large to justify this. They are as vital to our commerce and industry as any matter now dealt with by the State, affecting our material well-being, and they are every year increasing in extent and importance. As regards the principal rivers--the Mersey, the Tyne, the Tees, the Clyde, and the Wear especially--they are now controlled in accordance with the recommendation made by the Duke of Richmond's Select Committee, that "each catchment area should be placed under a single body of conservators, who should be responsible for maintaining the river, from its source to its outfall, in an efficient state." There are other rivers, however, that are administered rather in the interest of the landed proprietors than in that of navigation, and where these two come into conflict the State should have powers that would enable the public interest, which is both national and international, to be effectually protected.

The following table gives the area and length of some of the chief rivers of England:--

NORTH-EAST OF ENGLAND. Area. Length. Miles. Miles. Coquet 240 40 Wansbeck 126 22 Blyth 131 16 Tyne 1,130 34 Wear 456 45 Tees 708 79 Esk 147 21 Humber 10,500 ?? Hull 364 20 Foulness 133 14 Derwent 794 64 Ouse 1,842 40 Aire and Calder 815 78 Don 682 57 Trent 4,052 147 Ancholme 244 25 Ludd 139 7 Withern Eau 189 13

EAST ANGLIAN RIVERS. Area. Length. Miles. Miles. Bure 348 45 Yare 880 48 Blyth 79 17 Alde 109 24 Deben 153 27 Orwell 171 16 Stour 407 45 Colne 192 24 Crouch 181 15 Roding 317 33

OTHER RIVERS. Area. Length. Miles. Miles. Witham 1,079 40 Welland 760 42 Nene 1,077 100 Great Ouse 2,667 143 Wissey, or Stoke 243 28 Nar, or Setchy 131 25

Many of the above rivers are not navigable for vessels of any size, and are therefore not of much value to the transportation resources of the country. In the majority of cases, also, the character of the waterways, as regards locality, water-supply, &c., would not justify any large expenditure in adapting them for purposes of transport.

Add to tbrJar First Page Next Page Prev Page

 

Back to top