bell notificationshomepageloginedit profileclubsdmBox

Read Ebook: The Destinies of the Stars by Arrhenius Svante Fries Joens Elias Translator

More about this book

Font size:

Background color:

Text color:

Add to tbrJar First Page Next Page

Ebook has 299 lines and 51357 words, and 6 pages

Position and practical value of astronomy. Worship of stars. Chronology. The Australian negro's conception of the stars. Day and night, summer and winter. Solar year. Sun-worship. Changing phases of the moon in chronology. The Mexican "Tonalamatl." Moon-worship in Mesopotamia. Significance of the moon in astrology. The sun and the heat. Agriculture's demand on chronology. Worship of the planet Venus by the Mexicans and the Babylonians. The Church Calendar. The Zodiac. The seven planets. The week. Correspondence and sympathetic magic. The Platonic-Aristotelian philosophy. Astrology and alchemy. Tycho Brahe. Occult sciences. Aristarchos from Samos. Kopernicus. The progress of Astronomy.

THE MYSTERY OF THE MILKY WAY 41

Primitive conceptions of the Milky Way. Anaxagoras and Demokritos. Ptolemaios. Galilei. Cosmogenic speculations. Wm. Herschel's statistical researches regarding the distribution of the stars. The Milky Way as the foundation of the stellar system. The Milky Way as a nebula. Classification according to age of the stars, their distribution and velocity. Motion in the Orion nebula. The planetary nebulae. Kapteyn's "star-drifts." The origin of the Milky Way. Comparison between the Milky Way and a spiral nebula in "The Dogs of Orion." A few details from the Milky Way. The infinitely great and the infinitely small. The magnitude and destiny of the Milky Way.

THE CLIMATIC IMPORTANCE OF WATER VAPOUR 84

The four elements of Aristotle. Humid-warm climates. The Congo and Amazon basins. The carboniferous age. The effect of cloudiness. Desert climate. Steppes. "Kevirs" and "Bayirs." Sand dunes. The great Kevir. Climatic changes. Khanikoff's description. Salt lakes. Deposits of salt through evaporation. Huntington about the arefaction of the earth. Humid period during the ice-age. Climatic changes during historic time. Africa, Asia, Greece, Italy, Sicily. West-Europe's climate has grown more marine. Present conditions.

ATMOSPHERE AND PHYSICS OF THE STELLAR BODIES 119

Outer envelope of the stars. The large planets. Spectra. Mars, Earth, Venus, Mercury. Atmosphere impossible on the moon. The light from the Earth. The atmosphere of Mercury. The atmosphere of Venus and its Clouds. Composition of air and its change with height. Forced circulation. Troposphere and Stratosphere. Hydrogen in the highest strata of the atmosphere. Water vapour and carbonic acid in the air. "Geokoronium." Influence of gravity on composition of the atmosphere. The air on Venus and Mars.

THE CHEMISTRY OF THE ATMOSPHERE 155

Inhabited Worlds. Kinship of the stellar bodies. Presence of life. Importance of water and carbon. Importance of temperature. All life evolved from existence in water. Necessity of oxygen. Bacteria. Reducing substances preponderable in the World-matter. Volcanic gases and gases in solidified lava. Water, vapour, carbon dioxide, nitrogen gas, and sulphurous acid. Permanent gases and hydrogen. The poisonous character of the original air. Its purification. The importance of plant life and necessity of a solid crust in this process. Supply of carbonic dioxide and production of oxygen. The work of Koene. Silica. Cooling of the Earth and changing surface temperature. The ice-periods. Centres of collapse and lines of fissure in the crust. General survey of the gradual change of the air.

THE PLANET MARS 180

The controversy about the habitableness of Mars. Humidity on Mars. Early observations. The spectra of Mars and of the Moon compared. Investigations by Campbell and Marchand. The work of Lowell. Measurements by Slipher. Calculations by Very. The temperature on Mars according to these sources. Campbell's expedition to Mount Whitney in California. Oxygen on Mars. The cold on Mars detrimental to anything but the lowest forms of life. Cause of different results by Slipher and Campbell. Very's answer to Campbell's criticism. New measurements by Slipher. Campbell's new method of measurement of 1910. Christiansen calculates the temperature on Mars from intensity of the Sun's radiation. The sun-constant. Average temperature of Mars about forty degrees Centigrade. Possibly low plant life around the poles during summer. The canals on Mars are probably fissures in the crust. The length of the canals compared with that of the fissures in Earth's crust. The double canals on Mars compared with the parallel fissures in Calabria. Emanations along the fissures. The canals as affected by increasing cold or heat. The polar snow. Thawing of the canals. Travel of the water vapour independent of the topography. The desert sand on Mars. Clouds and mists. Highlands and mountains on Mars. Sand filling of the canals. The seas on Mars. The straightness and uniform breadth of the canals an illusion. Light and dark spots. "New" canals. The fancies of Lowell.

MERCURY, THE MOON, AND VENUS 228

Fissures on Mercury. Lowell's drawing. Centres of collapse. Absence of atmosphere. The climate on the Moon. W. Pickering's belief in frost formations on the Moon. The mountains on the Moon. Volcanoes. Circular elevated rings. "Seas" on the Moon. The Crater "Linn?." "Sinuses" and "Streaks" on the Moon. The light matter of the streaks probably lava-scum. The colour of the Moon and of the Earth. Comparison between the Moon and Mars. Changes on the Moon. "Snow" and "Vegetation" on the Moon according to W. Pickering. The fate of Mars and of the Earth. Falling meteoric dust. The climate on Venus. Swamps like those of the carboniferous age. Abundant vegetation. Low organisms. "Culture" on Venus will proceed from the poles. The future of Venus. The claims of astrology in modern light. Tycho Brahe. The dreams of Giordano Bruno probably true.

PAGE FIG. 1.--THE MILKY WAY 46 Photo by Easton.

FIG. 2.--PLANETARY NEBULA NO. 7009, NEW GENERAL CATALOGUE 52

FIG. 3.--NEBULA NO. 4594, NEW GENERAL CATALOGUE 66

FIG. 4.--NEBULA NO. 101 IN MESSIER'S CATALOGUE 70

FIG. 5.--NEBULA NO. 51 IN MESSIER'S CATALOGUE 71

FIG. 6.--MILKY WAY BETWEEN CASSIOPEIA AND SWAN 76 According to Wolf.

FIG. 7.--MILKY WAY IN EAGLE AND SAGITTARIUS 76 According to Wolf.

FIG. 8.--THE "TRIFID" HOLE IN EAGLE 77 According to Wolf.

FIG. 9.--TARIM RIVER WITH LAKES AND BAYIRS 96 According to Sven Hedin.

FIG. 10.--THE FORMER LAKE BONNEVILLE IN UTAH 106

FIG. 11.--JUPITER, 1909 122 According to F. le Coultre.

FIG. 12.--SATURN, 1909 123 According to F. le Coultre.

FIG. 14.--VENUS OBSERVED BY LANGLEY IN 1882 136

FIG. 18.--PHOTO OF MARS BY LAMPLAND 210

FIG. 19.--MARS ON APRIL 8, 1909 210 According to Quenisset.

FIG. 20.--THE SOUTH POLE SPOT ON MARS, 1909 210 According to Jarry Desloges.

FIG. 21.--SANDSTORM ON MARS, 1909 210 According to Antoniadi.

FIG. 22.--CLOUD ON EDGE OF MARS, THE 7TH OF MARCH, 1901 216 According to Molesworth.

FIG. 23.--MARS, JULY 11, 1907 216 According to Lowell.

FIG. 24.--MARS, OCTOBER 6, 1909 216 According to Antoniadi.

FIG. 25.--MERCURY 230 According to Lowell.

FIG. 26.--THE MOON NEAR THE CRATER TYCHO 230 Photo from Yerkes Observatory.

FIG. 27.--MARE SERENITATIS AND MARE TRANQUILLITATIS 231 Photo from Yerkes Observatory.

FIG. 28.--THE MOON NEAR ITS SOUTH POLE 240 Photo from Yerkes Observatory.

FIG. 29.--THE LUNAR CRATER COPERNICUS AND VICINITY 242 Photo from Yerkes Observatory.

The Destinies of the Stars

THE ORIGIN OF STAR-WORSHIP

Astronomy occupies a rather unique position among the natural sciences. While physics, chemistry, and the biological sciences form the foundation of the extraordinary material development of our day, astronomy, in the eyes of most people, is of little practical value. What benefit could we derive from knowing whether a star lies a hundred or a thousand billion miles from the Sun, or from understanding how the stellar bodies have evolved in the course of billions of years? And yet astronomy has not been as futile as is commonly imagined, neither is it useless at the present time. This science is still of the greatest importance to common life by fixing our standards of time and, before the introduction of the compass, was invaluable also to navigation, which art, moreover, depends now upon astronomy for determination of geographical position on the open sea. Observations for these purposes, however, are of such a simple nature, that they hardly fall under the astronomical science proper, but rather under the applied sciences. They have entered into daily life much as, in commerce, the determination of the weight of a body is not considered as belonging to the science of physics, although it depends on the use of a physical instrument, the scale.

But we must not forget that what we now consider so commonplace that it entirely has lost the grand aspect of science, once was the goal of groping scientific endeavour. All natural science has grown out of the needs of practical life.

Geometry is probably even older than astronomy. The name means: to measure land, and the oldest geometry was, accordingly, devoted to the measurement of distances on the Earth and later to the determination of the area of land-holdings. This extremely important practical application of geometry is of such a simple nature that it is not mentioned in modern mathematical science, to which geometry belongs. In this manner, the original theses of all our natural sciences have become the possession of the public to such a degree that they are looked upon as self-evident. This is the case also with those parts of astronomy which, because of their practical importance at the outset, gave rise to the science itself.

The growing knowledge about the stars, like all higher insight, became among primitive peoples the private possession of their leaders, was by these kept a secret and made a part of the venerable realm of religion. We find that a majority of these old peoples rendered worship to the stars, believing them to govern the fates of human beings. This may indeed seem highly remarkable, as our everyday experience is that the stellar bodies, with the exception of the Sun, exert no perceptible influence on organic nature, and such conclusion is emphatically confirmed by the systematic collection of all our experiences which we call modern science. The Sun, as stated, is the exception as it reigns over the entire nature, the living as well as the lifeless, by virtue of the heat and light which abundantly flow from this autocrat of our planetary system. Perhaps the Moon also plays some small active part as it seems somewhat to affect the barometric pressure, the magnetic and particularly the electric conditions of the atmosphere, which, in turn, appear to influence several life processes. On the other hand we cannot point to any influence upon nature traceable to the other stellar bodies.

Obviously, primitive man devoted his thoughts only to such conditions as affected his interests in a beneficial or detrimental way. On the assumption that these conditions were governed by spirits who resembled man and who in particular were endowed with will, our ancestors endeavoured by sacrifice and exorcism to move the spirits they feared to discontinue their harmful activity. Some such spirits dwelt in beasts of prey and in other noxious animals, such as poisonous snakes; others caused earthquakes, volcanic eruptions, snowstorms, lightning ravages, fires, floods, heat, drought, etc. Against these calamities religious exercises formed a protection. Religion sprang mainly from fear of spirits. Later on thank offerings and hymns were bestowed upon benevolent objects and phenomena in nature.

It is evident that this primitive, simple religion is of far greater age than star-worship. The latter presupposes a comparatively high degree of culture. The stars were of no benefit to man until it became necessary to measure time intervals comprising a greater number of days than might be counted on one's fingers. How this growth in all probability took place we shall endeavour to explain in the following. Fairly certain it is that star-worship did not grow out of man's admiration for the sublime drama which at dawn of morning commences at the eastern horizon, and proceeds in the course of a day over the firmament in order to close before night just beyond the western expanses, neither was it founded on man's gratitude toward the torch-bearers of night for their incessant battle against gloomy clouds and all the other spirits of darkness.

It is often stated that the assurance of the return of sunlight after the darkness of night enabled humanity with greater equanimity to acquiesce in the loss of light during one half of its existence and that worship was rendered to the Sun in gratitude therefor. "A new outlook upon life," says Troels Lund, "awakens the moment the great discovery is made that the night of sleep and the night of fear are equally long and always followed by morning and subsequent day." This discovery, however, our predecessors made long before they reached the human stage. Sun-worship by no means derived its origin therefrom.

Rather it is traceable to evidence of the Sun's connection with the changing seasons, although this change also is of domineering influence in the vegetable world inasmuch as the plants store reserve nourishment in the autumn, particularly, and on a large scale, during fructification. Also, lower and higher animals, for example, bees and squirrels, gather winter-stores. It is therefore small wonder if men on a comparatively low stage lay in provisions for the recurring periods of scant food supply.

The people of the bronze age here in the North were zealous Sun-worshippers thousands of years ago, as the many relics from this period, and particularly the rock-carvings, bear witness. The Celts of Western Europe have frequently symbolized the Sun as a cross, while the worship of Moon and stars seems to have been foreign to them as well as to the bronze-age people of the North. The Jewish Samson was a Sun-hero, the name being related to the Babylonian Shamash, the Sun-god. In Hesiodos' cosmogony the Sun is mentioned before the Moon . The old Germans worshipped both Sun and Moon, particularly the former. The Slavs possessed a Sun-god Dazbogu, but no deity identified with the Moon. Similar conditions obtained among the Finnish forefathers. The Chinese Tao-priests light fires during the vernal equinox as we do at Walpurgis and midsummer, and they sacrifice rice and salt to the flames. "This is a remnant of the Sun-cult," says Solomon Reinach, from whom these data in regard to Sun-worship principally are taken. In Japan, the Moon is of male sex, the Sun of female sex, which indicates that there, as with the Australian negroes, the Moon was originally considered more important than the Sun. Nevertheless the Japanese are now Sun-worshippers; the Sun is placed as emblem of the most high in their flag and the Mikado is known to trace his lineage from the Sun. They have, therefore, long ago passed from Moon-cult to Sun-cult. It is probable that this step was taken even earlier in China, where the Sun furthermore is of male sex. With growing civilization all people learn to understand, as have the Japanese, the superior importance of the Sun. The Incas of Peru, who reached a very high grade of culture, were sun-worshippers and called themselves children of the Sun, although they lived near the equator where the Moon-cult, as we presently shall see, owns its most faithful adherents.

In the neighbourhood of the equator, winter and summer differ very slightly with respect to temperature and altitude of the Sun. Rather, it is the alternation of humid and dry seasons that is of deciding importance. No sheet of snow covers the ground in winter-time, kills the vegetation, or decimates the supply of nourishment for animals and men. Indeed, contrary to our experience, a suppression of growth often accompanies a high altitude of the Sun due to the drought which simultaneously occurs. The altitude and luminosity of the Sun change altogether too slightly in the course of the year to attract the attention of primitive man. The light of the Moon, on the other hand, varies from full intensity to nothing and this takes place in periods so short that memory has no time to forget the cycle. Even the low-standing Australian negroes utilize the phases of the Moon to denote remote times. Chronometry in any true sense they do not possess, unable as they are to state the number of days in a month. How much more fortunate the peoples who could count to ten or better yet to twenty and thus were able to use the single or the double decade as a measure of time. For them it was easy to determine the time between two successive phases of the Moon, seven and a half days apart.

Oh, Sin, thou who alone givest light, Thou, who bringest light to men, Thou, who showest favour to the dark-tressed ones, Thy light shines on the firmament, Thy torch illuminates like fire, Thy radiance fills the wide earth. Oh, heavenly Anu, whose insight and wisdom no one comprehends, Thy light is splendid as Shamash, thy firstborn, Before thee prostrate the great gods themselves in the dust For on thee rests the fate of the world.

Add to tbrJar First Page Next Page

 

Back to top