bell notificationshomepageloginedit profileclubsdmBox

Read Ebook: Hygiene: a manual of personal and public health (New Edition) by Newsholme Arthur Sir

More about this book

Font size:

Background color:

Text color:

Add to tbrJar First Page Next Page

Ebook has 925 lines and 105154 words, and 19 pages

CHAPTER. PAGE

XL.--CLOTHING 265

PAGE

PROBLEMS IN MILK ANALYSIS 12

,, ,, DIETETICS 35

,, ,, WATER ANALYSIS 86

,, ,, AIR ANALYSIS 126

,, AS TO VENTILATION 137

,, ,, FLOW IN SEWERS 187

,, IN METEOROLOGY 242

,, AS TO WORK 254

,, IN VITAL STATISTICS 336

HYGIENE.

INTRODUCTORY.

In classical mythology, AEsculapius was worshipped as the god of Medicine, while his daughter Hygeia had homage done to her as the sweet and smiling goddess of Health. The temples of these two deities were always placed in close contiguity; and statues representing Hygeia were often placed in the temple of AEsculapius. In these statues she is represented as a beautiful maid, holding in her hand a bowl, from which a serpent is drinking--the serpent typifying the art of medicine, then merely an art, now establishing its right more and more to the dignity of a science.

That considerable attention was paid in very early times to matters relating to health, is also shewn by the elaborate directions contained in the Mosaic law as to extreme care in the choice of wholesome foods and drinks, in isolation of the sick, and attention to personal and public cleanliness. It is not surprising, therefore, to find that the Jews, throughout the whole of their history, have apparently enjoyed a high standard of health.

In this country great ignorance of the laws of Health has prior to the last fifty years prevailed, and consequently preventible diseases have been rampant, and have claimed innumerable victims. Each century has been marked by great epidemics, which have swept through the country, scattering disease and death in their course. In the fourteenth century, for instance, there was the Black Death, a disease so fatal that it left scarcely one-fourth part of the people alive; while Europe altogether is supposed to have lost about 40 millions of its inhabitants, and China alone 13 millions. A century and a half later came the Sweating Sickness . This was carried by Henry the Seventh's army throughout the country, and so great was the mortality, that "if half the population in any town escaped, it was thought great favour." Considerable light is thrown on the rapid spread of this disease after its importation, when we remember that there were no means of ventilation in the houses; that the floors were covered with rushes which were constantly put on fresh without removing the old, thus concealing a mass of filth and exhaling a noisome vapour; while clothing was immoderately warm and seldom changed; baths were very seldom indulged in, and soap hardly used.

In the sixteenth and seventeenth centuries there were five or six epidemics of The Plague, and it was only eradicated from London, when all the houses from Temple Bar to the Tower were burned down in the Great Fire of September 2nd, 1666, which destroyed the insanitary and necessitated the building of new and larger houses.

Scurvy, jail-fever, and small-pox, are other diseases which were formerly frightfully prevalent. Jail-fever, the same disease as the modern typhus-fever, has now become practically extinct in its former habitat, owing largely to the noble work of John Howard, "whose life was finally brought to an end by the fever, against the ravages of which his life had been expended." This disease was fostered by overcrowding, ill-ventilation, and filth.

Scurvy formerly produced a very great mortality, especially among sea-faring men. In Admiral Anson's fleet in 1742, out of 961 men, 626 died in nine months, or nearly two out of every three, and this was no solitary case. Captain Cook, on the other hand, conducted an expedition round the world, consisting of 118 men; and although absent over three years, only lost one life. He was practically the first to demonstrate the potency of fresh vegetables in preventing scurvy.

The striking facts respecting small-pox will be found on page 293. The general death-rate has also greatly declined. Thus while the annual death-rate in London 200 years ago was 80 per 1,000, it only averaged 18.8 in the four years 1896-99; and the death-rate of England and Wales has declined from 22.4 in 1841-50 to 18.7 per 1,000 in 1891-95 and 17.6 in 1896-99.

That much still remains to be done is evident on every hand. There is little doubt that the general death-rate might be reduced to 15 per 1,000 per annum, instead of the present 18, were the laws of health applied in every household and community. It has been estimated that on the average at least 20 cases of sickness occur for every death; therefore nearly half of the population is ill at least once a year. A simple calculation will show how much loss the community annually suffers from this vast mass of preventible sickness. It amounts to many millions of pounds, leaving out of the reckoning the suffering and distress which are always associated with sickness. For details relating to special diseases, see page 297.

In the prevention of this mass of sickness, the knowledge of its causation is half the battle; when once a disease is traced to its source, as a rule, the agency which produces it can be avoided.

The former treats of the influence of habits, cleanliness, exercise, clothing, and food on health; while the latter is concerned with the interests of the community at large, as affected by a pure supply of air and water, the removal of all excreta, the condition of the soil, and with the administrative measures required to secure the removal of evil conditions. It is obvious, however, that these two divisions are not mutually exclusive. What is important to the health of the community, is equally so to each individual member of it. The purity of air and water, for instance, is of immense importance both personally and collectively.

It will be convenient to study first the three main factors in relation to health--food, water, and air--subsequently considering other matters of importance to health .

FOOD.

Certain foods do not directly serve either as tissue or energy producers, but are useful in aiding the assimilation of food. Such are the various condiments which may be classed as adjuncts to food. Salt is so necessary to the assimilation of food and to the composition of the various tissues, that it may be ranked as an important food. Water, again, though already oxidised, and so not an immediate source of energy, is absolutely necessary to the assimilation of food, to the interchange between the various tissues and the blood, and to the elimination of effete products.

CLASSIFICATION OF FOODS.--Inasmuch as milk supplies all the food necessary for health and growth during the first year of life, it may reasonably be expected to afford some guidance as to the necessary constituents of a diet for the adult; although the conditions of life being altered in the latter, we can hardly expect the same proportions of the different materials to hold good. In the infant rapid growth and building up of new tissues and organs are going on, involving the necessity for a larger proportional amount of nitrogenous food than in the adult.

The following is the average composition of 100 parts of

It is evident from this analysis of milk that our food must contain representatives of all the above divisions. We have, therefore:--

Condiments and stimulants are not foods in the strict sense of the word, and will be discussed in a later chapter.

The percentage composition of gelatin is:--

The percentage composition of all proteids lies within the following limits:-

The fat obtained from food is not simply deposited in the body as such, to form a store of combustible matter, and to fill up the interstices between the different tissues. If this were so, the kind of fat deposited would vary with the food, which is not the case. The fat of the body is probably not formed directly from fatty food, but as the result of the metabolism of nitrogenous foods when this metabolism is incomplete. In the formation of milk this can be distinctly proved: the fat cells are formed from the protoplasm of the cells of the mammary gland.

Fats and carbohydrates, unlike proteids, do not excite metabolism in the system, and so, if in excess of the requirements of the system, can be stored up with comparative ease. Quiet and warmth, diminishing metabolism, conduce to the accumulation of fat in animals being fed for the market; and the same applies to human beings.

Even when carbohydrates are entirely absent from the food, they may be produced in the organism by the breaking up of nitrogenous matter. This certainly happens in diabetes, in which the nitrogenous food rapidly becomes converted into sugar and urea.

The deprivation of carbohydrate food is much better borne than that of fats, because in the latter the hydrogen is not completely oxidized, and because fats aid the assimilation of other food.

Oxide of iron is always present in the ash of blood and muscles, and in smaller quantities in milk. Fish and veal are usually deficient in it, while beef and yolk of egg are foods richest in iron. The amount of iron required in food is minute, and it is amply supplied by ordinary diet.

Phosphorus is an essential building material for the body. It is contained in foods chiefly in organic combination. The foods richest in it are yolk of egg, sweetbread , fish-roe, calves' brains, and the germ of wheat. Milk and cheese are very rich in phosphates.

Besides the above classification, foods have also been classified as follows:--

One imperial pint of bottled beer .

One tumblerful .

One glass of brandy or whiskey .

It will be understood, therefore, that in describing the effects of a moderate amount of alcohol on the system, an amount below 1 1/2 ounces of absolute alcohol per day is meant, freely diluted, and taken as a rule with meals.

EFFECTS OF IMMODERATE DOSES OF ALCOHOL ON THE SYSTEM.--Bearing in mind the definition given of a moderate dose, one is bound to admit that a large number of individuals exceed this amount daily, apparently without any very serious results. The system becomes habituated to large doses, and if the occupation is a laborious one, they may in part be oxidised in the system. Such, however, are exceptional cases. In the majority of cases evil results are by no means confined to those who indulge in very large quantities of alcohol at varying intervals. In fact these very often escape comparatively free, while others who never take a quantity sufficient to incapacitate them for their work, are sowing the seeds of chronic and oft incurable disease. The labourer who has a drinking bout at intervals is thoroughly nauseated; and the condition of liver and stomach induced, enforces abstinence on him for a time sufficient to bring his organs back to a normal condition; while the city merchant who indulges more moderately, but whose organs are almost continuously impregnated with alcohol, becomes gouty and prematurely old.

When the dose of alcohol is still larger, a condition of profound unconsciousness is produced , which may be difficult to distinguish from other forms of unconsciousness.

Besides the nervous diseases already named, a chronic thickening of the membranes covering the brain and spinal cord, gradually progressing and finally fatal, is often the consequence of prolonged alcoholic indulgence.

Old people, if ordered spirits for medical reasons, should drink them well diluted.

Women are much more easily affected by alcohol than men, and if they acquire the habit of excess, the hope of reformation is even less than with men.

The records of experience under certain conditions have, however, been so extensive, as to lead to trustworthy results. It has been abundantly proved that prolonged muscular work is best undergone during total abstinence from alcohol; and that the extremes of heat and cold and the exposure and exertions of marching armies, are best borne under similar conditions.

The artificial character of town life is commonly adduced as an argument for the moderate use of alcohol. In the case of healthy workers, this does not hold good; many of our hardest workers and thinkers take no alcohol.

Add to tbrJar First Page Next Page

 

Back to top