bell notificationshomepageloginedit profileclubsdmBox

Read Ebook: The Crayfish: An Introduction to the Study of Zoology. by Huxley Thomas Henry

More about this book

Font size:

Background color:

Text color:

Add to tbrJar First Page Next Page Prev Page

Ebook has 850 lines and 87752 words, and 17 pages

Now "crevis" is clearly one of two things. Either it is a modification of the French name "?crevisse," or of the Low Dutch name "crevik," by which the crayfish is known in these languages. The former derivation is that usually given, and, if it be correct, we must refer "crayfish" to the same category as "mutton," "beef," and "pork," all of which are French equivalents, introduced by the Normans, for the "sheep's flesh," "ox flesh," and "swine's flesh," of their English subjects. In this case, we should not have called a crayfish, a crayfish, except for the Norman conquest.

On the other hand, if "crevik" is the source of our word, it may have come to us straight from the Angle and Saxon contingent of our mixed ancestry.

Finally, as to why it is needful to have two names for the same thing, one vernacular, and one technical. Many people imagine that scientific terminology is a needless burden imposed upon the novice, and ask us why we cannot be content with plain English. In reply, I would suggest to such an objector to open a conversation about his own business with a carpenter, or an engineer, or, still better, with a sailor, and try how far plain English will go. The interview will not have lasted long before he will find himself lost in a maze of unintelligible technicalities. Every calling has its technical terminology; and every artisan uses terms of art, which sound like gibberish to those who know nothing of the art, but are exceedingly convenient to those who practise it.

In fact, every art is full of conceptions which are special to itself; and, as the use of language is to convey our conceptions to one another, language must supply signs for those conceptions. There are two ways of doing this: either existing signs may be combined in loose and cumbrous periphrases; or new signs, having a well-understood and definite signification, may be invented. The practice of sensible people shows the advantage of the latter course; and here, as elsewhere, science has simply followed and improved upon common sense.

But granting the expediency of a technical name for the Crayfish, why should that name be double? The reply is still, practical convenience. If there are ten children of one family, we do not call them all Smith, because such a procedure would not help us to distinguish one from the other; nor do we call them simply John, James, Peter, William, and so on, for that would not help us to identify them as of one family. So we give them all two names, one indicating their close relation, and the other their separate individuality--as John Smith, James Smith, Peter Smith, William Smith, &c. The same thing is done in Zoology; only, in accordance with the genius of the Latin language, we put the Christian name, so to speak, after the surname.

Having learned this much about the origin of the names of the crayfish, we may next proceed to consider those points which an observant Naturalist, who did not care to go far beyond the surface of things, would find to notice in the animal itself.

If a piece of the crayfish's skeleton is placed in strong vinegar, abundant bubbles of carbonic acid gas are given off from it, and it rapidly becomes converted into a soft laminated membrane, while the solution will be found to contain lime. In fact the exoskeleton is composed of a peculiar animal matter, so much impregnated with carbonate and phosphate of lime that it becomes dense and hard.

If the gills are cleared away, it is seen that the branchial cavity is bounded, on the inner side, by a sloping wall, formed by a delicate, but more or less calcified layer of the exoskeleton, which constitutes the proper outer wall of the thorax. At the upper limit of the branchial cavity, the layer of exoskeleton is very thin, and turning outwards, is continued into the inner wall or lining of the branchiostegite, which is also very thin .

Thus the branchial chamber is altogether outside the body, to which it stands in somewhat the same relation as the space between the flaps of a man's coat and his waistcoat would do to the part of the body enclosed by the waistcoat, if we suppose the lining of the flaps to be made in one piece with the sides of the waistcoat. Or a closer parallel still would be brought about, if the skin of a man's back were loose enough to be pulled out, on each side, into two broad flaps covering the flanks.

It will be observed that the branchial chamber is open behind, below, and in front; and, therefore, that the water in which the crayfish habitually lives has free ingress and egress. Thus the air dissolved in the water enables breathing to go on, just as it does in fishes. As is the case with many fishes, the crayfish breathes very well out of the water, if kept in a situation sufficiently cool and moist to prevent the gills from drying up; and thus there is no reason why, in cool and damp weather, the crayfish should not be able to live very well on land, at any rate among moist herbage, though whether our common crayfishes do make such terrestrial excursions is perhaps doubtful. We shall see, by-and-by, that there are some exotic crayfish which habitually live on land, and perish if they are long submerged in water.

With respect to the internal structure of the crayfish, there are some points which cannot escape notice, however rough the process of examination may be.

Thus, when the carapace is removed in a crayfish which has been just killed, the heart is seen still pulsating. It is an organ of considerable relative size , which is situated immediately beneath the middle region of that part of the carapace which lies behind the cervical groove; or, in other words, in the dorsal region of the thorax. In front of it, and therefore in the head, is a large rounded sac, the stomach , from which a very delicate intestine passes straight back through the thorax and abdomen to the vent .

Moreover, when the stomach is laid open, three large reddish teeth are seen to project conspicuously into its interior ; so that, in addition to its six pairs of jaws, the crayfish has a supplementary crushing mill in its stomach. On each side of the stomach, there is a soft yellow or brown mass, commonly known as the liver ; and, in the breeding season, the ovaries of the females, or organs in which the eggs are formed, are very conspicuous from the dark-coloured eggs which they contain, and which, like the exoskeleton, turn red when they are boiled. The corresponding part in a cooked lobster goes by the name of the "coral."

Beside these internal structures, the most noticeable are the large masses of flesh, or muscle, in the thorax and abdomen, and in the pincers; which, instead of being red, as in most of the higher animals, is white. It will further be observed that the blood, which flows readily when a crayfish is wounded, is a clear fluid, and is either almost colourless, or of a very pale reddish or neutral tint. Hence the older Naturalists thought that the crayfish was devoid of blood, and had merely a sort of ichor in place of it. But the fluid in question is true blood; and if it is received into a vessel, it soon forms a soft, but firm, gelatinous clot.

The ecdysis of the crayfish was first thoroughly studied a century and a half ago, by one of the most accurate observers who ever lived, the famous R?aumur, and the following account of this very curious process is given nearly in his words.

See R?aumur's two Memoirs, "Sur les diverses reproductions qui se font dans les ?crevisses, les omars, les crabes, etc.," "Histoire de l'Acad?mie royale des Sciences," ann?e 1712; and "Additions aux observations sur la mue des ?crevisses donn?es dans les M?moires de 1712." Ibid. 1718.

Having got thus far, the crayfish rests for a while, and then the agitation of the limbs and body recommences. The carapace is forced upwards and forwards by the protrusion of the body, and remains attached only in the region of the mouth. The head is next drawn backwards, while the eyes and its other appendages are extracted from their old investment. Next the legs are pulled out, either one at a time, or those of one, or both, sides together. Sometimes a limb gives way and is left behind in its sheath. The operation is facilitated by the splitting of the old integument of the limb along one side longitudinally.

When the legs are disengaged, the animal draws its head and limbs completely out of their former covering; and, with a sudden spring forward, while it extends its abdomen, it extracts the latter, and leaves its old skeleton behind. The carapace falls back into its ordinary position, and the longitudinal fissures of the sheaths of the limbs close up so accurately, that the shed integument has just the appearance the animal had when the exuviation commenced. The cast exoskeleton is so like the crayfish itself, when the latter is at rest, that, except for the brighter colour of the latter, the two cannot be distinguished.

After exuviation, the owner of the cast skin, exhausted by its violent struggles, which are not unfrequently fatal, lies in a prostrate condition. Instead of being covered by a hard shell, its integument is soft and flabby, like wet paper; though R?aumur remarks, that if a crayfish is handled immediately after exuviation, its body feels hard; and he ascribes this to the violent contraction which its muscles have undergone, leaving them in a state of cramp. In the absence of the hard skeleton, however, there is nothing to bring the contracted muscles at once back into position, and it must be some time before the pressure of the internal fluids is so distributed as to stretch them out.

When the process of exuviation has proceeded so far that the carapace is raised, nothing stops the crayfish from continuing its struggles. If taken out of the water in this condition, they go on moulting in the hand, and even pressure on their bodies will not arrest their efforts.

The length of time occupied from the first giving way of the integuments to the final emergence of the animal, varies with its vigour, and the conditions under which it is placed, from ten minutes to several hours. The chitinous lining of the stomach, with its teeth, and the "crabs'-eyes," are shed along with the rest of the cuticular exoskeleton; but they are broken up and dissolved in the stomach.

The new integuments of the crayfish remain soft for a period which varies from one to three days; and it is a curious fact, that the animal appears to be quite aware of its helplessness, and governs itself accordingly.

The late Mr. Robert Ball, of Dublin, in Bell's "British Crustacea," p. 239.

It would appear, from the best observations that have yet been made, that the young crayfish exuviate two or three times in the course of the first year; and that, afterwards, the process is annual, and takes place usually about midsummer. There is reason to suppose that very old crayfish do not exuviate every year.

It has been stated that, in the course of its violent efforts to extract its limbs from the cast-off exoskeleton, the crayfish sometimes loses one or other of them; the limb giving way, and the greater part, or the whole, of it remaining in the exuviae. But it is not only in this way that crayfishes part with their limbs. At all times, if the animal is held by one of its pincers, so that it cannot get away, it is apt to solve the difficulty by casting off the limb, which remains in the hand of the captor, while the crayfish escapes. This voluntary amputation is always effected at the same place; namely, where the limb is slenderest, just beyond the articulation which unites the basal joint with the next. The other limbs also readily part at the joints; and it is very common to meet with crayfish which have undergone such mutilation. But the injury thus inflicted is not permanent, as these animals possess the power of reproducing lost parts to a marvellous extent, whether the loss has been inflicted by artificial amputation, or voluntarily.

Injuries inflicted while the crayfish are soft after moulting, are apt to produce abnormal growths of the part affected; and these may be perpetuated, and give rise to various monstrosities, in the pincers and in other parts of the body.

In the reproduction of their kind by means of eggs the co-operation of the males with the females is necessary. On the basal joint of the hindermost pair of legs of the male a small aperture is to be seen . In these, the ducts of the apparatus in which the fecundating substance is formed terminate. The fecundating material itself is a thickish fluid, which sets into a white solid after extrusion. The male deposits this substance on the thorax of the female, between the bases of the hindermost pairs of thoracic limbs.

The eggs formed in the ovary are conducted to apertures, which are situated on the bases of the last pair of ambulatory legs but two, that is, in the hinder of the two pair which are provided with chelate extremities .

After the female has received the deposit of the spermatic matter of the male, she retires to a burrow, in the manner already stated, and then the process of laying the eggs commences. These, as they leave the apertures of the oviducts, are coated with a viscid matter, which is readily drawn out into a short thread. The end of the thread attaches itself to one of the long hairs, with which the swimmerets are fringed, and as the viscid matter rapidly hardens, the egg thus becomes attached to the limb by a stalk. The operation is repeated, until sometimes a couple of hundred eggs are thus glued on to the swimmerets. Partaking in the movements of the swimmerets, they are washed backwards and forwards in the water, and thus a?rated and kept free of impurities; while the young crayfish is formed much in the same way as the chick is formed in a hen's egg.

The process of development, however, is very slow, as it occupies the whole winter. In late spring-time, or early summer, the young burst the thin shell of the egg, and, when they are hatched, present a general resemblance to their parents. This is very unlike what takes place in crabs and lobsters, in which the young leave the egg in a condition very different from the parent, and undergo a remarkable metamorphosis before they attain their proper form.

For some time after they are hatched, the young hold on to the swimmerets of the mother, and are carried about, protected by her abdomen, as in a kind of nursery.

That most careful naturalist, Roesel von Rosenhof, says of the young, when just hatched:--

"At this time they are quite transparent; and when such a crayfish is brought to table, it looks quite disgusting to those who do not know what the young are; but if we examine it more closely, especially with a magnifying-glass, we see with pleasure that the little crayfish are already perfect, and resemble the large one in all respects. When the mother of these little crayfish, after they have begun to be active, is quiet for a while, they leave her and creep about, a short way off. But, if they spy the least sign of danger, or there is any unusual movement in the water, it seems as if the mother recalled them by a signal; for they all at once swiftly return under her tail, and gather into a cluster, and the mother hies to a place of safety with them, as quickly as she can. A few days later, however, they gradually forsake her."

Fishermen declare that "Hen Lobsters" protect their young in a similar manner. Jonston, who wrote in the middle of the seventeenth century, says that the little crayfish are often to be seen adhering to the tail of the mother. Roesel's observations imply the same thing; but he does not describe the exact mode of adherence, and I can find no observations on the subject in the works of later writers.

"Der Monatlich-herausgegeben Insecten Belustigung." Dritter Theil, p. 336. 1755.

Bell's "British Crustacea," p. 249.

It has been seen that the eggs are attached to the swimmerets by a viscid substance, which is, as it were, smeared over them and the hairs with which they are fringed, and is continued by longer or shorter thread-like pedicles into the coat of the same material which invests each egg. It very soon hardens, and then becomes very firm and elastic.

When the young crayfish is ready to be hatched, the egg case splits into two moieties, which remain attached, like a pair of watch glasses, to the free end of the pedicle of the egg . The young animal, though very similar to the parent, does not quite "resemble it in all respects," as Roesel says. For not only are the first and the last pairs of abdominal limbs wanting, while the telson is very different from that of the adult; but the ends of the great chelae are sharply pointed and bent down into abruptly incurved hooks, which overlap when the chelae are shut . Hence, when the chelae have closed upon anything soft enough to allow of the imbedding of these hooks, it is very difficult, if not impossible, to open them again.

Immediately the young are set free, they must instinctively bury the ends of their forceps in the hardened egg-glue which is smeared over the swimmerets, for they are all found to be holding on in this manner. They exhibit very little movement, and they bear rough shaking or handling without becoming detached; in consequence, I suppose, of the interlocking of the hooked ends of the chelae imbedded in the egg-glue.

Even after the female has been plunged into alcohol, the young remain attached. I have had a female, with young affixed in this manner, under observation for five days, but none of them showed any signs of detaching themselves; and I am inclined to think that they are set free only at the first moult. After this, it would appear that the adhesion to the parent is only temporary.

The walking legs are also hooked at their extremities, but they play a less important part in fixing the young to the parent, and seem to be always capable of loosing their hold.

I find the young of a Mexican crayfish to be attached in the same manner as those of the English crayfish; but, according to Mr. Wood-Mason's recent observations, the young of the New Zealand crayfishes fix themselves to the swimmerets of the parent by the hooked ends of their hinder ambulatory limbs.

Curious myths have gathered about crayfishes, as about other animals. At one time "crabs'-eyes" were collected in vast numbers, and sold for medicinal purposes as a remedy against the stone, among other diseases. Their real utility, inasmuch as they consist almost entirely of carbonate of lime, with a little phosphate of lime and animal matter, is much the same as that of chalk, or carbonate of magnesia. It was, formerly, a current belief that crayfishes grow poor at the time of new moon, and fat at that of full moon; and, perhaps, there may be some foundation for the notion, considering the nocturnal habits of the animals. Van Helmont, a great dealer in wonders, is responsible for the story that, in Brandenburg, where there is a great abundance of crayfishes, the dealers were obliged to transport them to market by night, lest a pig should run under the cart. For if such a misfortune should happen, every crayfish would be found dead in the morning: "Tam exitialis est porcus cancro." Another author improves the story, by declaring that the steam of a pig-stye, or of a herd of swine, is instantaneously fatal to crayfish. On the other hand, the smell of putrifying crayfish, which is undoubtedly of the strongest, was said to drive even moles out of their burrows.

THE PHYSIOLOGY OF THE CRAYFISH. THE MECHANISM BY WHICH THE PARTS OF THE LIVING ENGINE ARE SUPPLIED WITH THE MATERIALS NECESSARY FOR THEIR MAINTENANCE AND GROWTH.

As it matters little in what order we take the first three questions, in expanding Natural History into Zoology, we may as well follow that which accords with the history of science. After men acquired a rough and general knowledge of the animals about them, the next thing which engaged their interest was the discovery in these animals of arrangements by which results, of a kind similar to those which their own ingenuity effects through mechanical contrivances, are brought about. They observed that animals perform various actions; and, when they looked into the disposition and the powers of the parts by which these actions are performed, they found that these parts presented the characters of an apparatus, or piece of mechanism, the action of which could be deduced from the properties and connections of its constituents, just as the striking of a clock can be deduced from the properties and connections of its weights and wheels.

We have seen that the crayfish is a voracious and indiscriminate feeder; and we shall be safe in assuming that, if duly supplied with nourishment, a full-grown crayfish will consume several times its own weight of food in the course of the year. Nevertheless, the increase of the animal's weight at the end of that time is, at most, a small fraction of its total weight; whence it is quite clear, that a very large proportion of the food taken into the body must, in some shape or other, leave it again. In the course of the same period, the crayfish absorbs a very considerable quantity of oxygen, supplied by the atmosphere to the water which it inhabits; while it gives out, into that water, a large amount of carbonic acid, and a larger or smaller quantity of nitrogenous and other excrementitious matters. From this point of view, the crayfish may be regarded as a kind of chemical manufactory, supplied with certain alimentary raw materials, which it works up, transforms, and gives out in other shapes. And the first physiological problem which offers itself to us is the mode of operation of the apparatus contained in this factory, and the extent to which the products of its activity are to be accounted for by reasoning from known physical and chemical principles.

The first step in the process of feeding, therefore, is to reduce the food to such a state, that the separation of its nutritive parts, or those which can be turned to account, from its innutritious, or useless, constituents, may be facilitated. And this preliminary operation is the subdivision of the food into morsels of a convenient size for introduction into that part of the machinery in which the extraction of the useful products is performed.

The food may be seized by the pincers, or by the anterior chelate ambulatory limbs; and, in the former case, it is usually, if not always, transferred to the first, or second, or both of the anterior pairs of ambulatory limbs. These grasp the food, and, tearing it into pieces of the proper dimensions, thrust them between the external maxillipedes, which are, at the same time, worked rapidly to and fro sideways, so as to bring their toothed edges to bear upon the morsel. The other five pairs of jaws are no less active, and they thus crush and divide the food brought to them, as it is passed between their toothed edges to the opening of the mouth.

Having arrived at this general conception of the disposition of the parts of the factory, we may next proceed to consider the machinery of alimentation which is contained within it, and which is represented by the various divisions of the alimentary canal, with its appendages; by the apparatus for the distribution of nutriment; and by two apparatuses for getting rid of those products which are the ultimate result of the working of the whole organism.

The gastric mill begins in the hinder half of the cardiac division. Here, on the upper wall of the stomach, we see a broad transverse calcified bar from the middle of the hinder part of which another bar , united to the first by a flexible portion, is continued backwards in the middle line. The whole has, therefore, somewhat the shape of a cross-bow. Behind the first-mentioned piece, the dorsal wall of the stomach is folded in, in such a manner as to give rise to a kind of pouch; and the second piece, or what we may call the handle of the crossbow, lies in the front wall of this pouch. The end of this piece is dense and hard, and its free surface, which looks into the top of the cardiac chamber, is raised into two oval, flattened convex surfaces . Connected by a transverse joint with the end of the handle of the crossbow, there is another solid bar, which ascends obliquely forwards in the back wall of the pouch . The end which is articulated with the handle of the crossbow is produced into a strong reddish conical tooth , curved forwards and bifurcated at the summit; consequently, when the cavity of the stomach is inspected from the fore part of the cardiac pouch , the two-pointed curved tooth is seen projecting behind the convex surfaces , in the middle line, into the interior of that cavity. The joint which connects the handle of the crossbow with the hinder middle piece is elastic; hence, if the two are straightened out, they return to their bent disposition as soon as they are released. The upper end of the hinder middle piece is connected with a second flat transverse plate which lies in the dorsal wall of the pyloric chamber . The whole arrangement, thus far, may be therefore compared to a large cross-bow and a small one, with the ends of their handles fastened together by a spring joint, in such a manner that the handle of the one makes an acute angle with the handle of the other; while the middle of each bow is united with the middle of the other by the bent arm formed by the two handles. But, in addition to this, the outer ends of the two bows are also connected together. A small, curved, calcified bar passes from the outer end of the front crosspiece downwards and outwards in the wall of the stomach, and its hinder and lower extremity is articulated with another larger bar which runs upwards and backwards to the hinder or pyloric crosspiece, with which it articulates. Internally, this piece projects into the cardiac cavity of the stomach as a stout elongated reddish elevation , the surface of which is produced into a row of strong sharp, transverse ridges, which diminish in size from before backwards, and constitute a crushing surface almost like that of the grinder of an elephant. Thus, when the front part of the cardiac cavity is cut away, not only are the median teeth already mentioned seen, but, on each side of them, there is one of these long lateral teeth.

Works on mechanics are full of contrivances for the conversion of motion; but it would, perhaps, be difficult to discover among these a prettier solution of the problem; given a straight pull, how to convert it into three simultaneous convergent movements of as many points.

Add to tbrJar First Page Next Page Prev Page

 

Back to top