Read Ebook: Prairie Peak and Plateau: A Guide to the Geology of Colorado by Chronic Halka Chronic John
Font size:
Background color:
Text color:
Add to tbrJar First Page Next Page
Ebook has 492 lines and 45380 words, and 10 pages
PRAIRIE PEAK and PLATEAU
Introduction
Gold was discovered in the bed of the South Platte River in 1858. Prospectors flocked to Colorado as they had flocked only a few years before to California. They worked the sands and gravels of Cherry Creek, Clear Creek, Boulder Creek, and California Gulch. Exhausting the placer sands of the stream bottoms, they moved higher to mine gold-bearing veins at Central City and Blackhawk. Mining camps sprang into existence overnight, each heralding some new "strike," each populated by a new rush of fortune seekers. As lower areas were mined out, prospectors moved yet higher--to Breckenridge, Gold Hill, and Empire, Aspen, Leadville, and Cripple Creek. Silver was found as well as gold, then iron, and later tungsten and molybdenum. The metallic ring of mining tools echoed from Colorado's peaks. Fortunes were made here. Legends were born.
Prospectors and miners were not, however, the first people interested in the rocks of Colorado. Earlier, bands of nomadic Cheyenne and Arapaho Indians had searched Colorado's hills for flint for arrowheads and brightly colored clays for warpaint. Cliff-dwelling Pueblo Indians in southwestern Colorado sought clay for their pottery and fossil seashells for the magic of their medicine men. And from farther to the southwest, Navajo tribesmen came to Colorado for turquoise.
From clay to gold, much of Colorado's wealth has come from her mountains. But after the rush to the mines, as veins were mined out and placers worked over, as values and prices changed, her population sought the riches of the prairies: fertile lands for agriculture, and in the rock layers below, black gold--vast accumulations of oil and natural gas. The tablelands and plateaus west of the mountains yield their wealth, too. Here are valley farms, fed often by irrigation water, and ranch country. Here is more oil, and in some areas precious metals and uranium.
In recent years Colorado's prairies, peaks, and plateaus have brought new meaning to all America: the state now provides an attractive playground for state residents and their visitors. Campgrounds, streams, lakes, and high trails beckon in summer; barren slopes deep in winter snow attract the skier. More and more, those who live in Colorado and those who visit her seek to understand these mountains and hills and prairies, to learn of her geologic origins and her far distant past. For tourist and resident, casual visitor, ski enthusiast, Sunday picnicker, for all those who have met Colorado and enjoyed her, this book is written.
PLATEAUS UINTA MTS. GREEN RIVER BASIN Yampa River Steamboat Springs UINTA BASIN White River WHITE RIVER PLATEAU ROAN PLATEAU Glenwood Springs Colorado River Grand Junction GRAND MESA Gunnison River UNCOMPAHGRE PLATEAU Dolores River PARADOX BASIN MESA VERDE MOUNTAINS NORTH PARK RABIT EARS RANGE PARK RANGE MIDDLE PARK GORE RANGE FRONT RANGE ELK MTS. Aspen SAWATCH RANGE Leadville MOSQUITO RANGE Fairplay SOUTH PARK WEST ELK MTS. Gunnison Salida WET MTS. SANGRE DE CRISTO RANGE SAN LUIS VALLEY Rio Grande Alamosa SAN JUAN MTS. Ouray Silverton Durango MESA DE MAYA PLAINS Fort Collins South Platte River Denver GREAT PLAINS Colorado Springs Arkansas River WET MT. VALLEY HUERFANO PARK La Junta Walsenburg
I Colorado's Three Provinces
Scenically, Colorado is divided into three provinces: the Plains or Prairies on the east, the Rocky Mountains bisecting the state from north to south, and the Colorado Plateaus on the west. There are a number of local variations of course, but by and large the provinces are clearly defined. These three divisions will form the basis for our discussion of the geology of Colorado, for the scenic differences are almost exactly paralleled, and usually controlled, by differences in geologic structure.
The Plains rise gently from an elevation of about 3350 feet at the eastern border of the state to 5000 feet where they meet the mountains 150 miles further west.
Two major rivers cross the Colorado Plains: the South Platte River, flowing northeastward from the Denver region, and the Arkansas River, which leaves the mountains at Canon City south of Colorado Springs and travels eastward across the southern portion of the state. Tributaries of these two main river systems have etched the prairie surface, so that much of eastern Colorado has a gently rolling, hilly appearance.
The Mountains rise abruptly along a north-south line at about 105? west longitude. They reach elevations of over 14,000 feet at Pikes Peak, Mount Evans, Longs Peak , and fifty other peaks further west. The ranges of the Colorado Rockies form rank upon rank of ridges and peaks, roughly north-south in trend, about 100 miles across from east to west, extending from the northern to the southern border of the state. Here, in mountain springs and lakes, are born the rivers of Colorado: the Platte, the Arkansas, the Yampa, the Colorado. Crags and cliffs tower above tree-covered slopes, the rocks always a dominant part of the landscape. The continental divide runs through the state along the summit ridges. West of the divide, all streams flow to the Colorado River and the Pacific; east of it, streams flow into the Mississippi or the Rio Grande, and thence to the Gulf of Mexico.
West of the highest ranges, the country flattens out once more into the Plateaus, which extend across western Colorado, southern Utah, and northern Arizona. Here, the predominant land forms are flat-topped mesas and deep canyons. Redrock walls shimmer in the brilliance of the western sun, offset by deep purple shadows sometimes hiding ancient cliff dwellings. Fragrance of pine and juniper mingles with the pungency of sage. Narrow tracks lure the explorer. Despite the canyons, water is scarce except along major river systems, for this is the beginning of the desert west.
The scenic and geologic division of the state into three north-south strips is not everywhere clearly defined. In southwestern Colorado, the San Juan Mountains and the complicated uplifts surrounding Ouray and Silverton are out of key with either mountain or plateau. They are best considered part of the Mountain Province, however, although they extend it far to the west. Other exceptions to these divisions occur also. The Mountain Province is interrupted by four broad high-altitude valleys: North Park, Middle Park, South Park, and the San Luis Valley. The Uinta Mountains jut into the northwest corner of Colorado from adjacent Utah. And the Paradox, Uinta, and Green River Basins protrude into the Plateau Province, modifying its topographic character.
Before discussing the geologic nature of the three provinces, let us review briefly two sets of geologic terms. The first set has to do with the rocks themselves--What kind of rock is that?--but serves also to tell something about the origin of the rocks. The second set is concerned with time--When was that rock formed? Is it older or younger than adjacent rock? How does it relate, time-wise, to geologic events in other parts of the world?
These two sets of terms are presented in the charts that follow. If you are unfamiliar with geologic terminology, refer to these charts as often as you need to while you read this book, as well as to the glossary on pages 114-118.
Geologists divide rocks into three main groups, depending on their modes of origin.
Examples of these three classes of rocks are given in the accompanying figure. Many varieties of all three classes occur in Colorado.
Class Example Occurrence in Colorado
Sedimentary Sandstone Plains, plateaus, flanks of mountain areas Shale Conglomerate Limestone Igneous Extrusive: Volcanic areas such as San Juan Basalt Mountains, Spanish Peaks Intrusive: Pikes Peak, Longs Peak, and most Granite central mountain areas Diorite Metamorphic Marble Mountain areas Quartzite Gneiss Schist
Geologists arrange rocks in their chronologic sequence by studying the fossils and minerals which they contain. The age of some rocks can be determined with reasonable precision from ratios of radioactive minerals and their fission products. The relative age of others can be determined from their position, the fossils enclosed in them, and many minor details of their structure.
ERA Period Millions Distinctive fossils Events in Colorado of years ago
CENOZOIC Quaternary Modern types of Development of present animals and plants topography; glaciation in mountains 3 Tertiary Mammals, flowering Uplift and mountain plants building 70 MESOZOIC Dinosaurs and other reptiles Cretaceous Submergence, then uplift 135 Jurassic Desert, then submergence 180 Triassic Widespread floodplains and deserts 225 PALEOZOIC Permian First reptiles Widespread floodplains and deserts 270 Pennsylvanian Swamp and forest "Ancestral Rocky plants Mountains" 310 Mississippian Reef corals, sharks Partial submergence 350 Devonian Armored fish, first Probable submergence insects 400 Silurian Corals and shellfish Probable submergence 440 Ordovician First fish Submergence 500 Cambrian First hard-shelled Gradual encroachment of animals sea from west 570 PRECAMBRIAN "Lipalian Interval" Erosion to almost flat surface or peneplain Primitive Alternate episodes of soft-bodied marine mountain building and organisms erosion 3,600 plus
THE PRAIRIES
Beneath the flat prairies of eastern Colorado, sedimentary rocks form a series of layers. Those near the surface are among the youngest rocks in Colorado. We know this from the fossils they bear, fossils of large mammals such as the hairy mammoth, which lived in early Quaternary time, the bison, and many smaller mammals living today.
The layers below--sandstones, shales, and limestones--become progressively older as one goes deeper. Most of them were formed originally on the bottoms of shallow seas that covered this part of North America several times during the history of the continent. In most places the layers are horizontal or nearly so, but westward, as they approach the mountains, they bend upward, gently at first and then more steeply. At the very edge of the mountains, where they were dragged upward when the mountains rose, their eroded edges appear at the surface.
The entire sequence of flat-lying rocks can be studied where they are exposed along the mountain front or where streams and rivers have dissected them. They are also known from cuttings and cores of oil and water wells. Some parts of Colorado's eastern plains have been drilled so intensively in the search for oil and gas that we know a great deal about the subsurface sedimentary rock and can even make maps showing the distribution and character of the individual rock layers. From such maps, the history of the region can be deduced. We know, for example, that the area around Denver has subsided more in the past than has the area near La Junta or Lamar; it is called the Denver Basin because of its past history and not because it is a basin at present.
Although the plains of Colorado appear flat, they really slope gently eastward. The rock layers near the surface slope eastward also, but the deeper rock layers may not.
Near the western edge of the Plains Province, hills and valleys are formed by differential erosion of hard and soft rock layers. Some hills, such as Castle Rock, are topped with resistant sandstone; others, like Mesa de Maya south of Trinidad and Table Mountain near Golden, are capped with layers of basalt. Close to the mountains flat-topped foothills result from partial dissection of former erosion surfaces as the mountains, stabilized for a time, rose again, or as climatic cycles changed. Examples of these dissected erosion surfaces can be seen north and south of Boulder.
Far east of the mountain front, near the northern border of Colorado, remnants of another, higher prairie surface stand as Pawnee Buttes. Torrential erosion--spring floods and summer thunderstorms--has deeply furrowed the prairie surface here and left these buttes as lonely sentinels.
PRECAMBRIAN ROCKS PALEOZOIC ROCKS JURASSIC ROCKS SANDSTONE SHALY SANDSTONE SANDY SHALE SHALE JURASSIC ROCKS COVERED WITH VOLCANICS OR NEVER DEPOSITED.
We know little of the ancient basement rocks below the sedimentary layers of the plains, for few wells penetrate this deep. What we do know indicates that they are similar to rocks of the mountain masses to the west, and are composed of granite, schist, and gneiss. They probably are not rich in valuable minerals, however, for the mineral-rich veins of the mountains came about as a result of uplift of the mountain areas.
THE PEAKS
As the mountains rose, they were of course attacked by the forces of erosion. The sedimentary layers were completely stripped from the crests of many of the uplifts, so that Precambrian rocks were exposed. It is these rocks which form the summits of the highest peaks of Colorado. As with all rules, there are exceptions: the Spanish Peaks are volcanic, and the crest of the Sangre de Cristo Range is composed of sedimentary rocks.
The trend of most of the ranges in Colorado is north-south, swinging to northwest-southeast near the southern end. Surprisingly, in the northwestern corner of the state there is an east-west trending range, the Uinta Mountains.
Fifty or more mountain ridges in Colorado have been named as separate ranges. Of these, the most prominent, frequently visited ones will be discussed here.
Front Range
The easternmost range of the Rocky Mountains is the longest continuous uplift in the state. It is a relatively simple faulted anticline extending from Canon City northward to the Wyoming border, where it splits into two ridges, the Medicine Bow Mountains and the Laramie Range.
Along the highest portion of the range, from Pikes Peak to Rocky Mountain National Park, the Paleozoic and Mesozoic sediments formerly draped over the top of the range have long since been washed away, leaving only the gneiss, granite, and schist of the mountain core. The almost flat tops of Longs Peak, Mt. Evans, and Pikes Peak, and the rolling upland traversed by Trail Ridge Road in Rocky Mountain National Park are thought to be remnants of the 600-million-year-old erosion surface that once existed at the top of the Precambrian rocks, and that still exists below the sedimentary rocks of the Plains Province. This surface, formed near sea level, has been raised 12,000 to 14,000 feet within the Mountain Province.
Throughout most of its length, the Front Range displays some of the most striking high-altitude scenery in the world. Particularly accessible areas, well worthy of visits, are Rocky Mountain National Park, Berthoud and Loveland Passes, Mt. Evans, and Pikes Peak. In these areas the Precambrian rocks can be seen and studied, and the effects of glaciation observed.
Along the flanks of the Front Range, the eroded edges of the sedimentary rocks which once covered the range are exposed. These rocks are usually tilted sharply against the mountains, as at Garden of the Gods, Denver's Red Rocks Park, and the Flatirons near Boulder. The Rocky Mountain Association of Geologists has erected a plaque explaining the geology of the Red Rocks area; look for it about half a mile northeast of the Red Rocks Amphitheater. Tilted layers of Paleozoic and Mesozoic sandstones form hogback ridges along the mountain front, and stand out clearly on aerial photographs.
In some areas, particularly near Boulder, Coal Creek, and Golden, the tilting of the sedimentary layers has been so extreme that the layers are upside down. Basement rocks may even be thrust out above them.
Further north, near Loveland and Lyons, as well as further south at Colorado Springs, irregularities in the uplift have caused abrupt breaks in the generally smooth eastern edge of the range. Folds and faults in these areas trend northwest, cutting across and offsetting the mountain front.
RAMPART RANGE Garden of the Gods Ute Pass Fault MANITOU SPRINGS PIKES PEAK MASSIF CHEYENNE MOUNTAIN COLORADO SPRINGS CROSS SECTION Ute Pass Fault Rampart Fault Tertiary Mesozoic Paleozoic Precambrian
The west margin of the Front Range is not as sharply defined as the eastern margin. Prominent faults edge North, Middle, and South Parks, however. The northern end of the range merges with the Medicine Bow Mountains, where dips of sedimentary rocks seldom exceed 30 to 40 degrees. At its southern end, the Front Range plunges into the plains, although a southwest-trending ridge connects it with the Wet Mountains.
Wet Mountains
The Wet Mountains are the easternmost range of the Rockies south of Canon City. Their crest has a distinct northwest-southeast trend, with the north end offset about 25 miles westward from the south end of the Front Range. The Canon City Embayment lies at the junction between the ranges.
Though smaller and lower than the Front Range, the Wet Mountains include many pleasant and easily accessible recreation areas and a number of attractive streams and reservoirs. Greenhorn Peak, the summit of the range, is 12,334 feet high. It is formed of Precambrian granite, as is most of the crest of the range.
The structure of the eastern side of the Wet Mountains is similar to that of the Front Range, except that there are more faults in the sedimentary layers. The southern end plunges southeastward into the plains. On the western side, westward-dipping sediments are completely submerged in Cenozoic lava flows and debris from the mountains. Ore minerals very like those of the Front Range occur near Silver Cliff, but they have so far proved to be of little economic importance.
Sangre de Cristo Range and Spanish Peaks
The Sangre de Cristo Mountains are visible from many parts of southeastern Colorado as a jagged, sawtoothed, snow-crested ridge on the western skyline. They extend about 150 miles from the Arkansas River near Salida southward into New Mexico.
Add to tbrJar First Page Next Page