bell notificationshomepageloginedit profileclubsdmBox

Read Ebook: Science Primers Introductory by Huxley Thomas Henry

More about this book

Font size:

Background color:

Text color:

Add to tbrJar First Page Next Page

Ebook has 131 lines and 33079 words, and 3 pages

PART. SECT.

PAGE

LIVING BODIES.

SCIENCE PRIMERS.

Thus we believe that everything is the effect of something which preceded it as its cause, and that this cause is the effect of something else, and so on, through a chain of causes and effects which goes back as far as we choose to follow it. Anything is said to be explained as soon as we have discovered its cause, or the reason why it exists; the explanation is fuller, if we can find out the cause of that cause; and the further we can trace the chain of causes and effects, the more satisfactory is the explanation. But no explanation of anything can be complete, because human knowledge, at its best, goes but a very little way back towards the beginning of things.

Artificial things are, in fact, all produced by the action of that part of nature which we call mankind, upon the rest.

We talk of "making" a box, and rightly enough, if we mean only that we have shaped the pieces of wood and nailed them together; but the wood is a natural object and so is the iron of the nails. A watch is "made" of the natural objects gold and other metals, sand, soda, rubies, brought together, and shaped in various ways; a coat is "made" of the natural object, wool; and a frock of the natural objects, cotton or silk. Moreover, the men who make all these things are natural objects.

Carpenters, builders, shoemakers, and all other artisans and artists, are persons who have learned so much of the powers and properties of certain natural objects, and of the chain of causes and effects in nature, as enables them to shape and put together those natural objects, so as to make them useful to man.

A carpenter could not, as we say, "make" a chair unless he knew something of the properties and powers of wood; a blacksmith could not "make" a horseshoe unless he knew that it is a property of iron to become soft and easily hammered into shape when it is made red-hot; a brickmaker must know many of the properties of clay; and a plumber could not do his work unless he knew that lead has the properties of softness and flexibility, and that a moderate heat causes it to melt.

So that the practice of every art implies a certain knowledge of natural causes and effects; and the improvement of the arts depends upon our learning more and more of the properties and powers of natural objects, and discovering how to turn the properties and the powers of things and the connections of cause and effect among them to our own advantage.

Among natural objects, as we have seen, there are some that we can get hold of and turn to account. But all the greatest things in nature and the links of cause and effect which connect them, are utterly beyond our reach. The sun rises and sets; the moon and the stars move through the sky; fine weather and storms, cold and heat, alternate. The sea changes from violent disturbance to glassy calm, as the winds sweep over it with varying strength or die away; innumerable plants and animals come in being and vanish again, without our being able to exert the slightest influence on the majestic procession of the series of great natural events. Hurricanes ravage one spot; earthquakes destroy another; volcanic eruptions lay waste a third. A fine season scatters wealth and abundance here, and a long drought brings pestilence and famine there. In all such cases, the direct influence of man avails him nothing; and, so long as he is ignorant, he is the mere sport of the greater powers of nature.

At this present moment, as I look out of my window, it is raining and blowing hard, and the branches of the trees are waving wildly to and fro. It may be that a man has taken shelter under one of these trees; perhaps, if a stronger gust than usual comes, a branch will break, fall upon the man, and seriously hurt him. If that happens it will be called an "accident," and the man will perhaps say that by "chance" he went out, and then "chanced" to take refuge under the tree, and so the "accident" happened. But there is neither chance nor accident in the matter. The storm is the effect of causes operating upon the atmosphere, perhaps hundreds of miles away; every vibration of a leaf is the consequence of the mechanical force of the wind acting on the surface exposed to it; if the bough breaks, it will do so in consequence of the relation between its strength and the force of the wind; if it falls upon the man it will do so in consequence of the action of other definite natural causes; and the position of the man under it is only the last term in a series of causes and effects, which have followed one another in natural order, from that cause, the effect of which was his setting out, to that the effect of which was his stepping under the tree.

But, inasmuch as we are not wise enough to be able to unravel all these long and complicated series of causes and effects which lead to the falling of the branch upon the man, we call such an event an accident.

In fact, everything that we know about the powers and properties of natural objects and about the order of nature may properly be termed a law of nature. But it is desirable to remember that which is very often forgotten, that the laws of nature are not the causes of the order of nature, but only our way of stating as much as we have made out of that order. Stones do not fall to the ground in consequence of the law just stated, as people sometimes carelessly say; but the law is a way of asserting that which invariably happens when heavy bodies at the surface of the earth, stones among the rest, are free to move.

The laws of nature are, in fact, in this respect, similar to the laws which men make for the guidance of their conduct towards one another. There are laws about the payment of taxes, and there are laws against stealing or murder. But the law is not the cause of a man's paying his taxes, nor is it the cause of his abstaining from theft and murder. The law is simply a statement of what will happen to a man if he does not pay his taxes, and if he commits theft or murder; and the cause of his paying his taxes, or abstaining from crime is the fear of consequences which is the effect of his belief in that statement. A law of man tells what we may expect society will do under certain circumstances; and a law of nature tells us what we may expect natural objects will do under certain circumstances. Each contains information addressed to our intelligence, and except so far as it influences our intelligence, it is merely so much sound or writing.

While there is this much analogy between human and natural laws, however, certain essential differences between the two must not be overlooked. Human law consists of commands addressed to voluntary agents, which they may obey or disobey; and the law is not rendered null and void by being broken. Natural laws, on the other hand, are not commands but assertions respecting the invariable order of nature; and they remain laws only so long as they can be shown to express that order. To speak of the violation, or the suspension, of a law of nature is an absurdity. All that the phrase can really mean is that, under certain circumstances the assertion contained in the law is not true; and the just conclusion is, not that the order of nature is interrupted, but that we have made a mistake in stating that order. A true natural law is an universal rule, and, as such, admits of no exceptions.

Again, human laws have no meaning apart from the existence of human society. Natural laws express the general course of nature, of which human society forms only an insignificant fraction.

If nothing happens by chance, but everything in nature follows a definite order, and if the laws of nature embody that which we have been able to learn about the order of nature in accurate language, then it becomes very important for us to know as many as we can of these laws of nature, in order that we may guide our conduct by them.

Any man who should attempt to live in a country without reference to the laws of that country would very soon find himself in trouble; and if he were fined, imprisoned, or even hanged, sensible people would probably consider that he had earned his fate by his folly.

In like manner, any one who tries to live upon the face of this earth without attention to the laws of nature will live there for but a very short time, most of which will be passed in exceeding discomfort; a peculiarity of natural laws, as distinguished from those of human enactment, being that they take effect without summons or prosecution. In fact, nobody could live for half a day unless he attended to some of the laws of nature; and thousands of us are dying daily, or living miserably, because men have not yet been sufficiently zealous to learn the code of nature.

It has already been seen that the practice of all our arts and industries depends upon our knowing the properties of natural objects which we can get hold of and put together; and though we may be able to exert no direct control over the greater natural objects and the general succession of causes and effects in nature, yet, if we know the properties and powers of these objects, and the customary order of events, we may elude that which is injurious to us, and profit by that which is favourable.

Thus, though men can nowise alter the seasons or change the process of growth in plants, yet having learned the order of nature in these matters, they make arrangements for sowing and reaping accordingly; they cannot make the wind blow, but when it does blow they take advantage of its known powers and probable direction to sail ships and turn windmills; they cannot arrest the lightning, but they can make it harmless by means of conductors, the construction of which implies a knowledge of some of the laws of that electricity, of which lightning is one of the manifestations. Forewarned is forearmed, says the proverb; and knowledge of the laws of nature is forewarning of that which we may expect to happen, when we have to deal with natural objects.

But those who have never tried to observe accurately will be surprised to find how difficult a business it is. There is not one person in a hundred who can describe the commonest occurrence with even an approach to accuracy. That is to say, either he will omit something which did occur, and which is of importance; or he will imply or suggest the occurrence of something which he did not actually observe, but which he unconsciously infers must have happened. When two truthful witnesses contradict one another in a court of justice, it usually turns out that one or other, or sometimes both, are confounding their inferences from what they saw with that which they actually saw. A swears that B picked his pocket. It turns out that all that A really knows is that he felt a hand in his pocket when B was close to him; and that B was not the thief, but C, whom A did not observe. Untrained observers mix up together their inferences from what they see with that which they actually see in the most wonderful way; and even experienced and careful observers are in constant danger of falling into the same error.

Scientific observation is such as is at once full, precise, and free from unconscious inference.

Experiment is the observation of that which happens when we intentionally bring natural objects together, or separate them, or in any way change the conditions under which they are placed. Scientific experiment, therefore, is scientific observation performed under accurately known artificial conditions.

It is a matter of common observation that water sometimes freezes. The observation becomes scientific when we ascertain under what exact conditions the change of water into ice takes place. The commonest experiments tell us that wood floats in water. Scientific experiment shows that, in floating, it displaces its own weight of the water.

Thus science and common sense are not opposed, as people sometimes fancy them to be, but science is perfected common sense. Scientific reasoning is simply very careful common reasoning, and common knowledge grows into scientific knowledge as it becomes more and more exact and complete.

The way to science then lies through common knowledge; we must extend that knowledge by careful observation and experiment, and learn how to state the results of our investigations accurately, in general rules or laws of nature; finally, we must learn how to reason accurately from these rules, and thus arrive at rational explanations of natural phenomena, which may suffice for our guidance in life.

Suppose we have a tumbler half-full of water. The tumbler is an artificial object ; that is to say, certain natural objects have been brought together and heated till they melted into glass, and this glass has been shaped by a workman. The water, on the other hand, is a natural object, which has come from some river, pond, or spring; or it may be from a water-butt into which the rain which has fallen on the roof of a house has flowed.

Now the water has a vast number of peculiarities. For example, it is transparent, so that you can see through it; it feels cool; it will quench thirst and dissolve sugar. But these are not the characters which it is most convenient to begin with.

Nevertheless, although the parts of the water thus loosely slip and slide upon one another, yet they hold together to a certain extent. If the surface of the water is just touched with the finger, a little of it will adhere; and if the finger is then slowly and carefully raised, the adjacent water will be raised up into a slender column which acquires a noticeable length before it breaks. So, in the early morning, after heavy dew, you may see the water upon cabbage-leaves and blades of grass in spherical drops, the parts of which similarly hold together.

Water therefore is a liquid.

Let us next consider the property of weight. We say that anything has weight when, on trying to lift it from the ground, or on holding it in the hand, we have a feeling of effort. Or again, if anything which is supported at a certain height above the ground, falls when the support is taken away, we say that it has weight. Now the ground merely means the surface of the earth; and, as all bodies which possess weight fall directly towards the surface of the earth when they are not kept away from it by some support, we may say that all bodies which have weight tend to fall in this way. And it does not matter on what part of the surface of the earth you make the experiment. Rain consists of drops of water, and it does not matter whether we watch a shower in calm weather here, or in New Zealand; the drops fall perpendicularly towards the ground. But we know that the earth is a globe, and that New Zealand is at our antipodes, or on the opposite side of the globe to England. Hence if two showers are falling at the same time, one in New Zealand and one here--the drops must be falling in opposite directions, towards one another; that is, towards the centre of the earth which lies between them. In fact, all bodies which have weight tend to fall towards the centre of the earth--that is to say they fall in this way if there is nothing to prevent them; and when we speak of weight we mean this tendency to fall. To call anything heavy, is the same as saying that we fully expect that, if there is nothing to support it, it will fall to the ground; or that if we support it ourselves we shall be conscious of effort.

To make this clear, let us suppose that the only material bodies in the universe were two spherical drops of water, each a tenth of an inch in diameter. Each of these drops would have the same bulk as the other, and would be a quantity of matter exactly equivalent to the other. Then, however great the distance which separated these two drops, they would begin to approach one another; and, each moving with gradually increasing swiftness, they would at length meet in a point exactly half-way between the positions which they at first occupied. But if the bulk of one drop were greater than that of the other drop, then the larger would move more slowly, and the point of meeting would be by so much nearer the larger drop. It follows that, if the one body of water were as big as the earth and the other remained of its original size, no bigger than a rain-drop--the motion of the large mass towards the small one would be an inconceivably minute fraction of the total distance travelled over. It would appear as if the large body were perfectly still and drew the small body to itself.

What is true of water is true, so far as we know, of all kinds of matter, and we therefore say that it is a law of nature that all kinds of matter possess gravity; that is to say, that of any two, each tends to move towards the other, at a speed which is the slower the greater the quantity of matter it contains in proportion to that which the other contains; and this speed gradually becomes quicker as the two bodies approach.

Force, then, is the name which we give to that which causes or, in the case of pressure, tends to cause, motion. The force of gravity therefore means the cause of the pressure which we feel when bodies which possess gravity are supported by our bodies, and the cause of their movement towards the centre of the earth, when they are free to move. But it is exactly about the cause of these phenomena that we know nothing whatever.

A good deal of mischief is done by the inaccurate use of such words as attraction and force, as if they were the names of things having an existence apart from natural objects, and from the series of causes and effects which are open to our observation; while they are, in reality, merely the names of the unknown causes of certain phenomena. And it is worth while to take pains to get clear ideas on this head at the outset of the study of science.

We must next consider, not weight in general, but the weight of water. We say that a tumbler full of water is heavier than an empty tumbler, because the full tumbler gives us a greater feeling of effort when we lift it than the empty tumbler does. The more water there is in the tumbler the greater is the effort. A pail full of water requires still more effort, though the empty pail feels quite light; and, when we come to deal with a large tub full of water, we may be unable to stir it, though the empty tub could be lifted with ease. Thus it seems that the greater the bulk of water the more it weighs, and the less the bulk the less it weighs. But then a single drop of water in the palm of the hand seems to weigh nothing at all. However, this clearly cannot be, for the drop falls to the ground readily, and therefore it must have weight. Moreover, a few thousand drops would fill the tumbler, and if a thousand drops weigh something, each drop must have a thousandth of that weight. The fact is that our feeling of effort is a very rough measure of weight, and does not enable us to compare small weights, or even to perceive them if they are very small. To know anything accurately about weight we must have recourse to an instrument which is contrived for the purpose of measuring weights with precision.

Suppose that, instead of pressing down the empty scale, you put something that has weight into it; then, as soon as this weight is equal to that in the other scale, the beam will become horizontal. In fact, one scale has just as much tendency to move towards the centre of the earth as the other has, and as neither can go down without pulling the other up, they neutralise one another. It comes to the same thing, as if two boys of equal strength were pulling one against the other; so long as the pulls in opposite directions are equal, of course neither boy can stir; while the smallest addition of strength to one enables him to pull the other over.

Footnote 1:

Velocity, or swiftness, is measured by the distance over which a body travels, in a given time. Of two bodies, one of which travels through one foot in a second, while the other travels through two feet, the latter has the greater relative velocity.

Now what is true of water is true of all other bodies or material substances. Suppose that one of the measures is emptied and replaced, the beam may be brought to the horizontal position again by means of a piece of lead cut to exactly the right size. The piece of lead will thenceforth furnish an exactly corresponding or equivalent weight for so much water; and pieces of iron or brass, which counterpoise the lead, will also be equivalents of the weight of the water, or of the lead, or of one another. But the pieces of lead, iron, or brass will obviously be of much less volume or bulk than the water which they counterpoise. Here it follows that the densities of these metals, or the quantity of matter contained in the same volume, must be much greater than in the case of water.

Here are two tumblers of water. Throw some sand into one and some sawdust into the other. What happens? The sand sinks to the bottom, the sawdust floats at the top. We may stir them up as we like, but the sand will tumble to the bottom and the sawdust, as obstinately, rise to the top. Thus that which is lighter than the water floats, and that which is heavier sinks. So, if we pour some oil into the water, it floats, and if we pour some coloured spirit in carefully, it also floats; while treacle and quicksilver sink to the bottom, just as the iron-filings do.

We saw that the iron-filings sank, because iron is heavier than water. Here is a piece of the thin tinned sheet-iron that they make tin boxes of. What will happen if we drop it into the water? It is heavier than water, bulk for bulk, and therefore it will sink as you see it does.

But now here is a "tin" canister made of this very same tinned sheet-iron. We drop that into the water, and you see it does not sink at all, but floats at the top as if it were made of cork. Here is a perplexity. We were sure just now that iron is heavier than water, and here is an iron box floating! Is this an exception to the law? Not at all; for what we said was that a thing would float if it were lighter, bulk for bulk, than water. Now let us weigh the tin box, and having weighed it let us next try to find out how much the same bulk of water weighs. This may be done very simply, for the walls of the box are very thin, so that the inside of the box is very nearly as large as the whole box. Consequently, if we fill the box with water, and then weigh the water, we shall find out, very nearly, what is the weight of a bulk of water as great as that of the box. But if we do this, we shall find that the water which was contained in the box, weighs very much more than the box does. So that, bulk for bulk, the box, although it is made of iron, is really lighter than water, and that is why it floats.

You will all have heard of the iron ships which are now so common, and you may have wondered how it is, that ships made of thick plates of iron riveted together, and weighing many thousand tons, do not go to the bottom. But they are nothing but our tin canisters on a great scale, and they float because each ship weighs less than a quantity of water of the same bulk does.

It is because of this property of water to bear up things lighter than itself, and because of that other property of being easily moved which the particles of water have, that the sea, and rivers, and canals, are such great highways for mankind.

For there is nothing so heavy that it may not be made to float in water, if the box which holds it is large enough to make the weight of the whole less than the weight of the same bulk of water. And then, having once got the weight to float, the particles of water are so easily moved, that the force of the winds, or of oars, or of paddles, readily causes it to slip through the water from one place to another.

A cubic inch of water weighs about 252 grains and a half. Suppose that the tin box in the previous experiment was square, and had the bulk of 100 cubic inches, then the weight of a corresponding volume of water would be 25,250 grains. If the box weighed 8,416 grains, just a third of its bulk would be immersed; if 12,625 grains, half; if 16,832 grains, it would sink two-thirds of its volume, and so on. Or, if, when the box is floating, you make a mark upon its side at the exact level of the surface of the water, the bulk of that portion of the box which lies below the water-level can be ascertained. Suppose it to be thirty cubic inches, then the weight of the box will be 30 x 252?5 or 7575 grains. Hence it may be said that the immersed part of a floating body takes the place of the water which it displaces, and, as it were, represents it. If you press downwards upon the floating box, there is a feeling of resistance as it descends, and when the pressure is taken off, the body immediately rises again. Hence the water presses upwards against the bottom of the floating body. But it also presses against the sides, for if the sides of the box are very thin they will be driven in. If a thin empty bottle is tightly corked and lowered into deep water the cork will be driven in, or else the bottle will be crushed.

Thus water presses in all directions upon things which are immersed in it.

Suppose the tube to be square, and that the inside of the square measures exactly one inch each way. Then an inch of height of the tube will hold exactly one cubic inch of water. Since one cubic inch of water weighs 252 grains and a half, as much water as will fill the tube about two feet three inches and a half high, will weigh a pound , and fifteen pounds of water will fill such a tube between thirty-three and thirty-four feet high. And these respective weights measure the pressure of two columns of water, one twenty-seven and a half inches high, and the other nearly thirty-four feet high, on a square inch of the surface on which they rest.

Add to tbrJar First Page Next Page

 

Back to top