Read Ebook: Drug Smuggling and Taking in India and Burma by Anderson Roy K
Font size:
Background color:
Text color:
Add to tbrJar First Page Next Page Prev Page
Ebook has 168 lines and 30325 words, and 4 pages
Although we cannot doubt the veracity of Galileo, when he affirms that he had never seen any of the Dutch telescopes, yet it is expressly stated by Fuccarius, that one of these instruments had at this time been brought to Florence; and Sirturus assures us that a Frenchman, calling himself a partner of the Dutch inventor, came to Milan in May 1609, and offered a telescope to the Count de Fuentes. In a letter from Lorenzo Pignoria to Paolo Gualdo, dated from Padua, on the 31st of August 1609, it is expressly said, that, at the re-election of the professors, Galileo had contrived to obtain 1000 florins for life, which was alleged to be on account of an eye-glass like the one which was sent from Flanders to the Cardinal Borghese.
De Telescopio.
The art of grinding and polishing lenses was at this time very imperfect. Galileo, and those whom he instructed, were alone capable of making tolerable instruments. It appears, from the testimony of Gassendi and Gaertner, that, in 1634, a good telescope could not be procured in Paris, Venice, or Amsterdam; and that, even in 1637, there was not one in Holland which could shew Jupiter's disc well defined.
The first celestial object to which Galileo applied his telescope was the moon, which, to use his own words, appeared as near as if it had been distant only two semidiameters of the earth. He then directed it to the planets and the fixed stars, which he frequently observed with "incredible delight."
Incredibili animi jucunditate.
The observations which he made upon the moon possessed a high degree of interest. The general resemblance of its surface to that of our own globe naturally fixed his attention; and he was soon able to trace, in almost every part of the lunar disc, ranges of mountains, deep hollows, and other inequalities, which reverberated from their summits and margins the rays of the rising sun, while the intervening hollows were still buried in darkness. The dark and luminous spaces he regarded as indicating seas and continents, which reflected, in different degrees, the incidental light of the sun; and he ascribed the phosphorescence, as it has been improperly called, or the secondary light, which is seen on the dark limb of the moon in her first and last quarters, to the reflection of the sun's light from the earth.
These discoveries were ill received by the followers of Aristotle. According to their preconceived opinions, the moon was perfectly spherical, and absolutely smooth; and to cover it with mountains, and scoop it out into valleys, was an act of impiety which defaced the regular forms which Nature herself had imprinted. It was in vain that Galileo appealed to the evidence of observation, and to the actual surface of our own globe. The very irregularities on the moon were, in his opinion, the proof of divine wisdom; and had its surface been absolutely smooth, it would have been "but a vast unblessed desert, void of animals, of plants, of cities, and of men--the abode of silence and inaction--senseless, lifeless, soulless, and stripped of all those ornaments which now render it so varied and so beautiful."
Nescio quo fato ductus.
The importance of this great discovery was instantly felt by the enemies as well as by the friends of the Copernican system. The planets had hitherto been distinguished from the fixed stars only by their relative change of place, but the telescope proved them to be bodies so near to our own globe as to exhibit well-defined discs, while the fixed stars retained, even when magnified, the minuteness of remote and lucid points. The system of Jupiter, illuminated by four moons performing their revolutions in different and regular periods, exhibited to the proud reason of man the comparative insignificance of the globe he inhabits, and proclaimed in impressive language that that globe was not the centre of the universe.
When Horky first presented himself to Kepler, after the publication of this work, the opinion of his patron was announced to him by a burst of indignation which overwhelmed the astonished author. Horky supplicated mercy for his offence; and, as Kepler himself informed Galileo, he took him again into favour, on the condition that Kepler was to show him Jupiter's satellites, and that Horky was not only to see them, but to admit their existence.
When the spirit of philosophy had thus left the individuals who bore so unworthily her sacred name, it was fortunate for science that it found a refuge among princes. Notwithstanding the reiterated logic of his philosophical professor at Padua, Cosmo de Medici preferred the testimony of his senses to the syllogisms of his instructor. He observed the new planets several times, along with Galileo, at Pisa; and when he parted with him, he gave him a present worth more than 1000 florins, and concluded that liberal arrangement to which we have already referred.
As philosopher and principal mathematician to the Grand Duke of Tuscany, Galileo now took up his residence at Florence, with a salary of 1000 florins. No official duties, excepting that of lecturing occasionally to sovereign princes, were attached to this appointment; and it was expressly stipulated that he should enjoy the most perfect leisure to complete his treatises on the constitution of the universe, on mechanics, and on local motion. The resignation of his professorship in the university of Padua, which was the necessary consequence of his new appointment, created much dissatisfaction: but though many of his former friends refused at first to hold any communication with him, this excitement gradually subsided; and the Venetian senate at last appreciated the feelings, as well as the motives, which induced a stranger to accept of promotion in his native land.
Berlin Ephemeris, 1788.
Edin. Phil. Journ. vol. vi. p. 313.
Life and Correspondence of Dr Bradley, Oxford, 1832, p. 533, See also his Supplement. Oxford, 1833, p. 17.
The great success which attended the first telescopic observations of Galileo, induced him to apply his best instruments to the other planets of our system. The attempts which had been made to deprive him of the honour of some of his discoveries, combined, probably, with a desire to repeat his observations with better telescopes, led him to announce his discoveries under the veil of an enigma, and to invite astronomers to declare, within a given time, if they had observed any new phenomena in the heavens.
Before the close of 1610, Galileo excited the curiosity of astronomers by the publication of his first enigma. Kepler and others tried in vain to decipher it; but in consequence of the Emperor Rodolph requesting a solution of the puzzle, Galileo sent him the following clue:--
"Altissimam planetam tergeminam observavi."
I have observed that the most remote planet is triple.
In explaining more fully the nature of his observation, Galileo remarked that Saturn was not a single star, but three together, nearly touching one another. He described them as having no relative motion, and as having the form of three o's, namely, oOo, the central one being larger than those on each side of it.
Although Galileo had announced that nothing new appeared in the other planets, yet he soon communicated to the world another discovery of no slight interest. The enigmatical letters in which it was concealed formed the following sentence:--
"Cynthiae figuras aemulatur mater Amorum."
Venus rivals the phases of the moon.
Hitherto, Galileo had observed Venus when her disc was largely illuminated; but having directed his telescope to her when she was not far removed from the sun, he saw her in the form of a crescent, resembling exactly the moon at the same elongation. He continued to observe her night after night, during the whole time that she could be seen in the course of her revolution round the sun, and he found that she exhibited the very same phases which resulted from her motion round that luminary.
Galileo had long contemplated a visit to the metropolis of Italy, and he accordingly carried his intentions into effect in the early part of the year 1611. Here he was received with that distinction which was due to his great talents and his extended reputation. Princes, Cardinals, and Prelates hastened to do him honour; and even those who discredited his discoveries, and dreaded their results, vied with the true friends of science in their anxiety to see the intellectual wonder of the age.
In order to show the new celestial phenomena to his friends at Rome, Galileo took with him his best telescope; and as he had discovered the spots on the sun's surface in October or November 1610, or even earlier, he had the gratification of exhibiting them to his admiring disciples. He accordingly erected his telescope in the Quirinal garden, belonging to Cardinal Bandini; and in April 1611 he shewed them to his friends in many of their most interesting variations. From their change of position on the sun's disc, Galileo at first inferred, either that the sun revolved about an axis, or that other planets, like Venus and Mercury, revolved so near the sun as to appear like black spots when they were opposite to his disc. Upon continuing his observations, however, he saw reason to abandon this hasty opinion. He found that the spots must be in contact with the surface of the sun,--that their figures were irregular,--that they had different degrees of darkness,--that one spot would often divide itself into three or four,--that three or four spots would often unite themselves into one,--and that all the spots revolved regularly with the sun, which appeared to complete its revolution in about twenty-eight days.
Professor Rigaud is of opinion that Galileo had discovered the solar spots at an earlier period than eighteen months before May 1612.
Previous to the invention of the telescope, spots had been more than once seen on the sun's disc with the unassisted eye. But even if these were of the same character as those which Galileo and others observed, we cannot consider them as anticipations of their discovery by the telescope. As the telescope was now in the possession of several astronomers, Galileo began to have many rivals in discovery; but notwithstanding the claims of Harriot, Fabricius, and Scheiner, it is now placed beyond the reach of doubt that he was the first discoverer of the solar spots. From the communication which I received in 1822 from the late Dr Robertson, of Oxford, it appeared that Thomas Harriot had observed the solar spots on the 8th of December 1610; but his manuscripts, in Lord Egremont's possession, incontestably prove that his regular observations on the spots did not commence till December 1, 1611, although he had seen the spots at the date above mentioned, and that they were continued till the 18th of January 1613. The observations which he has recorded are 199 in number, and the accounts of them are accompanied with rough drawings representing the number, position, and magnitude of the spots. In the observation of Harriot, made on the 8th December 1610, before he knew of Galileo's discovery, he saw three spots on the sun, which he has represented in a diagram. The sun was then 7? or 8? high, and there was a frost and a mist, which no doubt acted as a darkening glass. Harriot does not apply the name of spots to what he noticed in this observation, and he does not enumerate it among the 199 observations above mentioned. Professor Rigaud considers it "a misapplication of terms to call such an observation a discovery;" but, with all the respect which we feel for the candour of this remark, we are disposed to confer on Harriot the merit of an original discoverer of the spots on the sun.
See page 40.
These interesting MSS. I have had the good fortune of seeing in the possession of my much valued friend, the late Professor Rigaud of Oxford.
Edin. Phil. Journ. 1822, vol. vi. p. 317. See Rigaud's Life of Bradley, Supplement, p. 31.
Id. It., p. 37, 38.
Another candidate for the honour of discovering the spots of the sun, was John Fabricius, who undoubtedly saw them previous to June 1611. The dedication of the work in which he has recorded his observation, bears the date of the 13th of June 1611; and it is obvious, from the work itself, that he had seen the spots about the end of the year 1610; but as there is no proof that he saw them before October, we are compelled to assign the priority of the discovery to the Italian astronomer.
Joh. Fabricii Phrysii de Maculis in Sole observatis, et apparente earum cum Sole conversione, Narratio. Wittemb. 1611.
The original of this letter is in the British Museum.
In the last of the letters which our author addressed to Velser, and which was written in December 1612, he recurs to his former discovery of the elongated shape, or rather the triple structure, of Saturn. The singular figure which he had observed in this planet had entirely disappeared; and he evidently announces the fact to Velser, lest it should be used by his enemies to discredit the accuracy of his observations. "Looking on Saturn," says he, "within these few days, I found it solitary, without the assistance of its accustomed stars, and, in short, perfectly round and defined like Jupiter; and such it still remains. Now, what can be said of so strange a metamorphosis? Are the two smaller stars consumed like the spots on the sun? Have they suddenly vanished and fled? or has Saturn devoured his own children? or was the appearance indeed fraud and illusion, with which the glasses have for so long a time mocked me, and so many others who have often observed with me? Now, perhaps, the time is come to revive the withering hopes of those who, guided by more profound contemplations, have followed all the fallacies of the new observations, and recognised their impossibilities. I cannot resolve what to say in a chance so strange, so new, and so unexpected; the shortness of the time, the unexampled occurrence, the weakness of my intellect, and the terror of being mistaken, have greatly confounded me." Although Galileo struggled to obtain a solution of this mystery, yet he had not the good fortune to succeed. He imagined that the two smaller stars would reappear, in consequence of the supposed revolution of the planet round its axis; but the discovery of the ring of Saturn, and of the obliquity of its plane to the ecliptic, was necessary to explain the phenomena which were so perplexing to our author.
The ill health to which Galileo was occasionally subject, and the belief that the air of Florence was prejudicial to his complaints, induced him to spend much of his time at Selve, the villa of his friend Salviati. This eminent individual had ever been the warmest friend of Galileo, and seems to have delighted in drawing round him the scientific genius of the age. He was a member of the celebrated Lyncaean Society, founded by Prince Frederigo Cesi; and though he is not known as the author of any important discovery, yet he has earned, by his liberality to science, a glorious name, which will be indissolubly united with the immortal destiny of Galileo.
The subject of floating bridges having been discussed at one of the scientific parties which had assembled at the house of Salviati, a difference of opinion arose respecting the influence of the shape of bodies on their disposition to float or to sink in a fluid. Contrary to the general opinion, Galileo undertook to prove that it depended on other causes; and he was thus led to compose his discourse on floating bodies, which was published in 1612, and dedicated to Cosmo de Medici. This work contains many ingenious experiments, and much acute reasoning in support of the true principles of hydrostatics; and it is now chiefly remarkable as a specimen of the sagacity and intellectual power of its author. Like all his other works, it encountered the most violent opposition; and Galileo was more than once summoned into the field to repel the aggressions of his ignorant and presumptuous opponents. The first attack upon it was made by Ptolemy Nozzolini, in a letter to Marzemedici, Archbishop of Florence; and to this Galileo replied in a letter addressed to his antagonist. A more elaborate examination of it was published by Lodovico delle Colombe, and another by M. Vincenzo di Grazia. To these attacks, a minute and overwhelming answer was printed in the name of Benedetti Castelli, the friend and pupil of Galileo; but it was discovered, some years after Galileo's death, that he was himself the author of this work.
Discorso intorno alle cose che stanno in su l'acqua, o che in quella si muovono. Opere di Galileo, vol. ii. pp. 165-311.
Opere di Galileo, vol. ii. pp. 355-367.
Ibid. 367-390.
These three treatises occupy the whole of the third volume of the Opere di Galileo.
The current of Galileo's life had hitherto flowed in a smooth and unobstructed channel. He had now attained the highest objects of earthly ambition. His discoveries had placed him at the head of the great men of the age; he possessed a professional income far beyond his wants, and even beyond his anticipations; and, what is still dearer to a philosopher, he enjoyed the most perfect leisure for carrying on and completing his discoveries. The opposition which these discoveries encountered, was to him more a subject for triumph than for sorrow. Prejudice and ignorance were his only enemies; and if they succeeded for a while in harassing his march, it was only to lay a foundation for fresh achievements. He who contends for truths which he has himself been permitted to discover, may well sustain the conflict in which presumption and error are destined to fall. The public tribunal may neither be sufficiently pure nor enlightened to decide upon the issue; but he can appeal to posterity, and reckon with confidence on "its sure decree."
The ardour of Galileo's mind, the keenness of his temper, his clear perception of truth, and his inextinguishable love of it, combined to exasperate and prolong the hostility of his enemies. When argument failed to enlighten their judgment, and reason to dispel their prejudices, he wielded against them his powerful weapons of ridicule and sarcasm; and in this unrelenting warfare, he seems to have forgotten that Providence had withheld from his enemies those very gifts which he had so liberally received. He who is allowed to take the start of his species, and to penetrate the veil which conceals from common minds the mysteries of nature, must not expect that the world will be patiently dragged at the chariot wheels of his philosophy. Mind has its inertia as well as matter; and its progress to truth can only be insured by the gradual and patient removal of the obstructions which surround it.
The boldness--may we not say the recklessness--with which Galileo insisted upon making proselytes of his enemies, served but to alienate them from the truth. Errors thus assailed speedily entrench themselves in general feelings, and become embalmed in the virulence of the passions. The various classes of his opponents marshalled themselves for their mutual defence. The Aristotelian professors, the temporising Jesuits, the political churchmen, and that timid but respectable body who at all times dread innovation, whether it be in religion or in science, entered into an alliance against the philosophical tyrant who threatened them with the penalties of knowledge.
The party of Galileo, though weak in numbers, was not without power and influence. He had trained around him a devoted band, who idolised his genius and cherished his doctrines. His pupils had been appointed to several of the principal professorships in Italy. The enemies of religion were on this occasion united with the Christian philosopher; and there were, even in these days, many princes and nobles who had felt the inconvenience of ecclesiastical jurisdiction, and who secretly abetted Galileo in his crusade against established errors.
Although these two parties had been long dreading each others power, and reconnoitring each others position, yet we cannot exactly determine which of them hoisted the first signal for war. The church party, particularly its highest dignitaries, were certainly disposed to rest on the defensive. Flanked on one side by the logic of the schools, and on the other by the popular interpretation of Scripture, and backed by the strong arm of the civil power, they were not disposed to interfere with the prosecution of science, however much they may have dreaded its influence. The philosophers, on the contrary, united the zeal of innovators with that firmness of purpose which truth alone can inspire. Victorious in every contest, they were flushed with success, and they panted for a struggle in which they knew they must triumph.
In this state of warlike preparation Galileo addressed a letter, in 1613, to his friend and pupil, the Abb? Castelli, the object of which was to prove that the Scriptures were not intended to teach us science and philosophy. Hence he inferred, that the language employed in the sacred volume in reference to such subjects should be interpreted only in its common acceptation; and that it was in reality as difficult to reconcile the Ptolemaic as the Copernican system to the expressions which occur in the Bible.
It was in vain to meet such reasoning by any other weapons than those of the civil power. The enemies of Galileo saw that they must either crush the dangerous innovation, or allow it the fullest scope; and they determined upon an appeal to the inquisition. Lorini, a monk of the Dominican order, had already denounced to this body Galileo's letter to Castelli; and Caccini, bribed by the mastership of the convent of St Mary of Minerva, was invited to settle at Rome for the purpose of embodying the evidence against Galileo.
Though these plans had been carried on in secret, yet Galileo's suspicions were excited; and he obtained leave from Cosmo to go to Rome about the end of 1615. Here he was lodged in the palace of the Grand Duke's ambassador, and kept up a constant correspondence with the family of his patron at Florence; but, in the midst of this external splendour, he was summoned before the inquisition to answer for the heretical doctrines which he had published. He was charged with maintaining the motion of the earth, and the stability of the sun--with teaching this doctrine to his pupils--with corresponding on the subject with several German mathematicians--and with having published it, and attempted to reconcile it to Scripture, in his letters to Mark Velser in 1612. The inquisition assembled to consider these charges on the 25th of February 1615; and it was decreed that Galileo should be enjoined by Cardinal Bellarmine to renounce the obnoxious doctrines, and to pledge himself that he would neither teach, defend, nor publish them in future. In the event of his refusing to acquiesce in this sentence, it was decreed that he should be thrown into prison. Galileo did not hesitate to yield to this injunction. On the day following, the 26th of February, he appeared before Cardinal Bellarmine, to renounce his heretical opinions; and, having declared that he abandoned the doctrine of the earth's motion, and would neither defend nor teach it, in his conversation or in his writings, he was dismissed from the bar of the inquisition.
It is said that Galileo was cited to appear at Rome on this occasion; and the opinion is not without foundation.
Add to tbrJar First Page Next Page Prev Page