bell notificationshomepageloginedit profileclubsdmBox

Read Ebook: The philosophy of biology by Johnstone James

More about this book

Font size:

Background color:

Text color:

Add to tbrJar First Page Next Page

Ebook has 780 lines and 110707 words, and 16 pages

PAGE

THE CONCEPTUAL WORLD 1

THE ORGANISM AS A MECHANISM 49

THE ACTIVITIES OF THE ORGANISM 83

THE VITAL IMPETUS 120

THE INDIVIDUAL AND THE SPECIES 162

TRANSFORMISM 208

THE MEANING OF EVOLUTION 245

THE ORGANIC AND THE INORGANIC 289

Entelechy is an elemental agency in nature which we are compelled to postulate because of the failure of mechanism. It is not spirit, nor a form of energy, but the direction and co-ordination of energies. There is a sign, or direction of inorganic happening which absolutely characterises the processes which are capable of analysis by physico-chemical methods of investigation, and the result of this direction of inorganic happening is material inertia. Yet this direction cannot be universal: it must be evaded somewhere in the universe. It is evaded by the organism.

The problem of the nature of life is only a pseudo-problem.

MATHEMATICAL AND PHYSICAL NOTIONS 342

Infinity and the notion of the limit. Functionality. Frequency distributions and probability. Matter, force, mass, and inertia. Energy-transformations. Isothermal and adiabetic transformations. The Carnot engine and cycle. Entropy. Inert matter.

INDEX 377

THE PHILOSOPHY OF BIOLOGY

THE CONCEPTUAL WORLD

Let us suppose that we are walking along a street in a busy town; that we are familiar with it, and all the things that are usually to be seen in it, so that our attention is not likely to be arrested by anything unusual; and let us further suppose that we are thinking about something interesting but not intellectually difficult. In these circumstances all the sights of the town, and all the turmoil of the traffic fail to impress us, though we are, in a vague sort of way, conscious of it all. Electric trams approach and recede with a grinding noise; a taxicab passes and we hear the throb of the engine and the hooting of the horn, and smell the burnt oil; a hansom comes down the street and we hear the rhythmic tread of the horse's feet and the jingle of the bells; we pass a florist's shop and become aware of the colour of the flowers and of their odour; in a caf? a band is playing "ragtime." There are policemen, hawkers, idlers, ladies with gaily coloured dresses and hats, newsboys, a crowd of people of many characteristics. It is all a flux of experience of which we are generally conscious without analysis or attention, and it is a flux which is never for a moment quite the same, for everything in it melts and flows into everything else. The noise of the tram-cars is incessant, but now and then it becomes louder; the music of the orchestra steals imperceptibly on our ears and as imperceptibly fades away; the smell of the flowers lingers after we pass the shop, and we do not notice just when we cease to be conscious of it; the rhythm of the ragtime continues to irritate after we have ceased to hear the band--all the sense-impressions that we receive melt and flow over into each other and constitute our stream of consciousness, and this changes from moment to moment without gap or discontinuity. It is not a condition of "pure sensation," but it is as nearly such as we can experience in our adult intellectual life.

It is easy to discover that many things must have occurred in the street which did not affect our full consciousness. We may learn afterwards that we have passed several friends without recognising them; we may read in the newspapers about things that happened that we might have seen, but which we did not see; we may think we know the street fairly well, but we find that we have difficulty in recalling the names of three contiguous shops in it; if we happen to see a photograph which was taken at the time we passed through the street we are usually surprised to find that there were many things there that we did not see. Why is it, then, that so much that might have been perceived by us was not really perceived? We cannot doubt that everything that came into the visual fields of our eyes must have affected the terminations of the optic nerves in the retinas; the complex disturbances of the air in the street must have set our tympanic membranes in motion; and all the odoriferous particles inhaled into our nostrils must have stimulated the olfactory mucous membranes. In all these cases the stimulation of the receptor organs must have initiated nervous impulses, and these must have been propagated along the sensory nerves, and must have reached the brain, affecting masses of nerve cells there. Nothing in physiology seems to indicate that we can inhibit or repress the activity of the distance sense-receptors, visual, auditory, and olfactory, with their central connections in the brain; they must have functioned, and must have been physically affected by the events that took place outside ourselves, and yet we were unconscious, in the fullest sense of this term, of all this activity. Why is it, then, that our perception was so much less than the actual physical reception of external stimuli that we must postulate as having occurred? Sherlock Holmes would have said that we really saw and heard all these things although we did not observe them, but the full explanation involves a much more careful consideration of the phenomena of perception than this saying indicates.

There is, of course, no doubt that we did see and hear and smell all the things that occurred in the street during our aimless peregrination, that is, all the things which so happened that they were capable of affecting our organs of sense. This is true if we mean by seeing and hearing and smelling merely the stimulation of the nerve-endings of the visual, auditory, and olfactory organs, and the conduction into the brain of the nervous impulses so set up. But merely to be stimulated is only a part of the full activity of the brain; the stimulus transmitted from the receptor organs must result in some kind of bodily activity if it is to affect our stream of consciousness. Two main kinds of activity are induced by the stimulation of a receptor organ and a central ganglion, those which we call reflex actions, and those actions which we recognise as resulting from deliberation. We must now consider what are the processes that are involved in these kinds of neuro-muscular activity.

It is also a schematic description that assumes a simplicity that does not really exist. As a rule a reflex is initiated by the stimulation of more than one receptor organ, and the impulses initiated may thus reach the central nervous system by more than one path. There is no simple shunting of the afferent impulse from the cell in which it terminates into another nerve, when it becomes an efferent impulse; but, instead of this, the impulse may "zigzag" through a maze of paths in the brain or spinal cord connecting together afferent and efferent nerves and ganglia. Further, the final part of the reflex, the muscular contraction, is far from being a simple thing, for usually a series of muscles are stimulated to contract, each of them at the right time and with the right amount of force, and every contraction of a muscle is accompanied by the relaxation of the antagonistic muscle. There are muscles which open the eyelids and others which close them, and the cerebral impulse which causes the levators to contract at the same time causes the depressors to relax.

It is quite necessary to remember that the simple reflex is really a process of much complexity and may involve many other parts and structures than those to which we immediately direct our attention. But leaving aside these qualifications we may usefully consider the general characters of the reflex, regarding it as a common, automatically performed, restricted bodily action, involving receptor organ, central nervous organ, and effector organ. There are certain kinds of external stimuli that continually affect our organs of sense, and there are certain kinds of muscular and glandular activity that occur "as a matter of course," when these stimuli fall on our organs of sense. The emanation from onions or the vapour of ammonia causes our eyes to water; the smell of savoury food causes a flow of saliva; and anything that approaches the face very rapidly causes us to close the eyes. Reflexes are, in a way, commonly occurring, purposeful and useful actions, and their object is the maintenance of a normal condition of bodily functioning.

We dare hardly say that the simple reflex is an unconsciously performed action, although we are not conscious, in the fullest sense of the term, of the reflexes that habitually take place in ourselves. But even in the decapitated frog, which moves its limbs when a drop of acid is placed on its back, something, it has been said, akin to consciousness may flash out and light up the automatic activity of the spinal cord. We must not think of consciousness as that state of acute mentality which we experience in the performance of some difficult task, or in some keenly appreciated pleasure, or in some condition of mental or bodily distress; it is also that dimly felt condition of normality that accompanies the satisfactory functioning of the parts of the bodily organism. But this dim and obscure feeling of the awareness of our actions is easily inhibited whenever what we call intellectual activity proceeds.

Much of the stimulation of our receptor organs is of this generally occurring nature, and we are not aware of it although the stimuli received are such as to induce useful and purposeful bodily activity. In walking along the street we automatically avoid the people, and the other obstacles that we encounter, by means of regulated movements of the body and limbs, but this is activity that has become so habitual and easy that we are hardly aware of it, and not at all, perhaps, of the physical stimuli which induce it. But not only do we receive stimuli which are reflected into bodily actions without our being keenly aware of this reception, but we also receive stimuli which do not become reflected into bodily activity. It is, Bergson suggests, as if we were to look out into the street through a sheet of glass held perpendicularly to our line of sight; held in this way we see perfectly all that happens in front of us, but when we incline the glass at a certain angle it becomes a perfect reflector and throws back again the rays of light that it receives. This is, of course, a physical analogy, and no comparison of material things with psychical processes can go very far, but in a way it is more than an analogy. In our indolent absorbed state of mind we do not as a rule see the objects which we are not compelled to avoid, and which do not, in any way, influence our immediate condition of bodily activity. The optical images of all these things are thrown upon our retinas and are, in some way, thrown or projected upon the central ganglia, but there the series of events comes to an end, for the images are not reflected out towards the periphery of the body as muscular actions. We cannot doubt that this is why we do not perceive all the stimulation of our organs of sense that we are sure that take place. These stimuli pass through us, as it were, unless they are reflected out again as actions. In this reflection, or translation of neutral into muscular activity, perceptions arise.

Let something unusual happen in the street while we are walking through it--a runaway horse, or the fall of an overhead "live" wire, for instance, something that has seldom or never formed part of our experience, and something that may have an immediate effect on us as living organisms. Then perception arises at once because the stimulation of our organs of sense presents us with something which is unfamiliar, and yet not so unfamiliar that it does not recall from memory, or from derived experience, reminiscences of the images of somewhat similar things, and of the effects of these. The train of events that now proceeds in our central nervous system becomes radically different from that which proceeded in our former, rather aimless, series of actions. The stimuli no longer pass easily through the "lower" ganglia of the brain, but flash upwards into the cortical regions, where they become confronted with the possibility of innumerable alternative paths and connections with all the parts of the body. They waver, so to speak, before adopting one or other, or a combination of these paths; there is hesitation, deliberation, and finally choice of a path, with the result that a series of muscular organs become inervated and motor actions, of a type more or less competent to the situation in which we find ourselves, are set up. In this hesitation and deliberation perception arises. It is when the animal may act in a certain way as the result of a stimulus which is not a continually recurrent one, but at the same time may refrain from acting, or may act in one of several different ways, that perception of external things and their relations arises.

That is to say, we perceive and think because we act. We do not look out on the environment in which we are placed in a speculative kind of way, merely receiving the images of things, and classifying and remembering them, while all the time we are passive in so far as our bodily activities are concerned. If the results of modern physiology teach us anything in an unequivocal way they teach us this--that the organs of activity, muscles, glands, and so on, and the organs of sense and communication, are integrally one series of parts, and that apart from motor activity nervous activity is an aimless kind of thing. It is because we act that we think and disentangle the images of things presented to us by our organs of sense, and subject all that is in the stream of consciousness to conceptual analysis.

So also with colour. If we had no such apparatus as prisms or diffraction gratings, which enable us to find what is the wave length of light, should we have any idea of the spectral hues, red, yellow, orange, green, etc., as differing from each other quantitatively? It is certain that we should not. But observation and experiment have shown that the nerve-endings of the optic nerve in the retina are stimulated by vibrations of something which we agree to call the ether of space, and that the frequency of vibration of light which we call red is less than that which we call orange, while the frequency of vibration of orange light is less again than that of blue light, and so on. To our consciousness red, orange, yellow, and blue light are absolutely different, but we disregard this intuition and we say that our perceptions of light are similar in kind but differ, in some of them are more intense than are some others. Again, have we any intuitive knowledge of increasing temperature? If we dip our hands into ice-cold water the sensation is one of pain, if the water has a temperature of 5? C. it feels cold, if it is at 15? C. we have no particular appreciation of temperature, if at 25? C. it feels very warm, if it is at 60? it is very hot, and if it is at 90? we are probably scalded and the feeling is again one of pain. If we place a thermometer in the water we notice that each sensation in turn is associated with a progressive lengthening of the mercury thread, and if we investigate the physical condition of the water we find that at each stage the velocity of movement of the molecules was greater than that at the preceding stage. We say, then, that our different perceptions were those of heat of different degrees of intensity, so transferring to the perceptions themselves the notions of space-magnitudes acquired by a study of the expansion of the mercury in the thermometer, or by the adoption of the physical theory of the kinetic structure of the water. Yet it is quite certain that what we experienced were quite different things or conditions, cold, warmth, heat, and pain, and indeed, in this series of perceptions different receptor organs are involved.

That is to say, the louder is the sound the greater must be the increase of loudness before we notice a difference. Let us assume now that the successive sensations of loudness that we receive as the syren blows louder and louder are, each of them, just the same amount louder than the preceding sound; that is to say, let us assume that what we experience are "minimal perceptible differences" of sensation--that they are "elements of loudness"--thus we construct a series of sounds each of which differs from that preceding it by an elemental increment of loudness. Now things that cannot be further decomposed are necessarily equal to each other; if, for instance, the atoms represent the ultimate units into which we break up the matter called oxygen, then these atoms are all equal to each other. Therefore the increments of loudness are equal to each other.

so that we seem to establish a mathematical relation between the intensity of our sensations and the intensity of the stimuli that give rise to those sensations, but this relation depends on the assumption that what we call "minimal perceptible differences" of sensation are numerical differences that are equal to each other, and this is, of course, an assumption that cannot possibly be proved.

Thus we decompose our stream of consciousness into a series of quantitatively different and qualitatively different things, upon each of which we confer independent existence. We attribute to these different aspects of our consciousness extension, but the extension is due only to our analysis; for the qualities of pitch, loudness, colour, odour, etc., which we disentangle from each other, did not exist apart from each other, any more than do the sine and cosine curves into which we decompose an arbitrarily drawn curved line. The multiplicity of our consciousness is intensive, like the multiplicity that we see to exist in the abstract number ten. This number stands for a group of things, but its multiplicity is intensive and only exists because we are able to subdivide anything in thought to an indefinite extent. Now, so far we have only separated what we agree to regard as the elemental parts of our general perception of the environment, but it is to be noted that we have not given to these elements anything like spatial extension.

We may, if we like, regard our intuition of space as that of an indefinitely large, homogeneous, empty medium which surrounds us and in which we may, in imagination, place things. So regarded it is difficult to see in what way our notion of space differs from our idea of "nothing," a pseudo-idea incapable of analysis, except into the idea of something which might be somewhere else. The more we think about it the more we shall become convinced that space, that is the "form" of space, represents our actual or potential modes of motion, that is, our powers of exertional activity. Space, we say, has three dimensions; in all our analysis of the universe, and of the activities that we can perceive in it, this idea of movement in three dimensions, forward and backward, up and down, and right and left, occurs; and we have to recognise that in it there is something fundamental, as fundamental as the intuitive knowledge that we possess of the direction of right and left. It is because we can move in such a way that any of our motions, no matter how complex, can be resolved into the components of backward and forward, right and left, and up and down, these directions all being at right angles to each other, that we speak of our movements as three-dimensional ones. Our geometry is founded, therefore, on concepts derived from our modes of activity; and there is nothing in the universe, apart from our own activity, that makes this the only geometry possible to us. Euclidean geometry does not depend on the constitution of the external universe, but on the nature of the organism itself.

There is a little Infusorian which lives, in its adult phase, on the surface of the spherical ova of fishes. These ova float freely in sea water, and the Infusorian crawls on their surfaces, moving about by means of ciliary appendages. It does not swim about in the water, but adheres closely to the surface of the ovum on which it lives. Let us suppose that it is an intelligent animal and that it is able to construct a geometry of its own; if so, this geometry would be very different from our own.

See appendix, p. 350.

See appendix, p. 346.

What we call space, therefore, depends on our intuition of bodily exertion. This intuition includes the knowledge that a certain change has occurred as the consequence of the expenditure of a certain amount of bodily energy, and that, as the result of this change, the relation of the rest of the universe to our body has become different. We think of our body as the origin, or centre, of a system of co-ordinates:--

Thus we do not conceptualise the actual intervals of duration of which we are able to mark the end-points; they are lived by us, and they are real absolute things independent of our wills. Suppose we come in from a long walk, tired and thirsty, and ask the maid to get tea ready at once. She puts the kettle on the gas stove and then sits down to read. The water takes, say, five minutes to boil. What do we mean by this?

This is what we mean:--

Things that happen in a part of inorganic nature arbitrarily detached from the rest, and investigated by the methods of mathematical physics, do not endure. Let us suppose that we take some silver and add nitric acid to it: the metal dissolves. We can then add hydrochloric acid to the solution and precipitate the metal in the form of chloride; and we can then fuse this chloride with carbonate of soda, or some other substance, and so obtain the metal again. If we work carefully enough we can repeat this series of operations again and again and the original portion of silver will remain unchanged both in nature and in mass. All the chemical reactions into which it has entered have not affected it in any way; that is to say, these reactions have not endured.

Except that, of course, the reactions that are supposed to occur are very complex ones.

This is what we must understand by the duration of the organism. Everything that it experiences for the first time persists in its organisation. It acquires the ability of responding to some stimulus by a definite, purposeful reaction, the effect of which is to aid it in its struggle for existence; and this reaction, once carried out, becomes a "motor habit" or the basis of a reflex, or in some other way, as in the process of immunisation, remains a part of the modes of functioning of the animal. In our behaviour certain cerebral nerve tracts become laid down and continue to exist throughout life, modifying all our future experience. Our past experience accumulates. There must be direct continuity in our flux of consciousness, for no perception seems ever to fade absolutely from memory. This continual addition of perceptions to those that already exist makes our consciousness ever become more complex, so that a perception experienced for the first time is never quite the same when it is again experienced. The first time that we go up and down in an elevator, or sit on a "joy-wheel," or ascend in a balloon or an aeroplane, or become intoxicated, constitutes an unique event in our lives, and we experience a "new sensation." What the blas? man of the world complains of is this accumulation, or rather persistence, of his experiences. A repetition of the same stimulus never again begets the same perception. The first hearing of a modern drawing-room song may be enjoyable, but the next time we hear it we are not interested, and by-and-bye it becomes very tiresome. The first hearing of a great symphony usually perplexes us, and we are perhaps repelled by unusual harmonies, or progressions, or strange modulations, but subsequent hearings afford increasing pleasure. We say that there was "so much in it" that we did not understand it, yet precisely the same series of external stimuli affected our auditory membranes on each occasion, and the same molecular disturbances were transmitted along our afferent nerves to the central nervous system, where the same physical effects must have been produced. The difference in all these cases between the repetitions of the same stimuli was that the later ones became added to the earlier ones, so that the state of consciousness produced by, or which was concomitant with, these external stimuli was a different state in each case.

This is the duration of the intelligently acting animal: it is not merely memory, but memory and the accumulation of all its past modes of responding to changes in its environment, whether these modes of response were conscious ones , or unconscious ones . It is not merely the experience of the individual organism, but also all the experience of those things which were done or experienced by the ancestry of the organism, and which were transmitted by heredity to the progeny. Motor habits are formed, so that much the same series of muscular actions are carried out when a stimulus formerly experienced is again experienced. Pure memory remains, so that the images of past things and actions somehow persist in our consciousness. Physical analogy suggests that these images are inscribed on the substance of the brain or are stored away in some manner; but, apart from the incredible difficulty of imagining a mechanism competent for this purpose, it is obvious that we thus apply to the investigation of our consciousness , the concept of extension which can only apply in all its strictness to the things outside ourselves on which we are able to act. All these motor habits, functional reactions, and memory images are our duration or accumulated experience. The motor habits and those functional habitual reactions of other parts of the body than the sensori-motor system are the basis of our actions, but the memory images are, so to speak, pressed back into that part of our organisation which does not emerge into consciousness. Only so much of them as bear on the situation in which we, for the moment, find ourselves and which may therefore influence our actions, flash out into consciousness. As "dreamers" we indulge ourselves in the luxury of becoming conscious of these memory images, but as "men of action" we sternly repress them, or so much of them as do not assist us in the actions that we are performing. Yet it is in the experience of each of us that, in spite of this continual inhibition, parts of our memories slip through the barriers of utility and surreptitiously remind us of all that we have been and thought.

Thus we simplify the stream of our consciousness. That of which we are conscious at any time is never more than a part of our crude sensation: we never perceive more than a small part of all that our organs of sense transmit to our central nervous system. But even these chosen perceptions of the external world are so rich, so chaotic and confused, that we are unable to attend to them all at once and we therefore "skeletonise" the contents of our consciousness. We think about it a bit at a time. It is an unitary thing, unable to be broken up, but we look at it from a great number of different points of view, so to speak; and then, fixing our attention on some aspect of it, we agree to ignore all the rest. We thus detach parts of it from the rest and, having thus arbitrarily decomposed it, we call these separate aspects the elements of our perceptions, and confer upon them separate existence in space and time. We remember and classify things and group together all those that seem to resemble each other. We form genera, agreeing to ignore all but the most general characteristics of the things which we try to conceptualise. We do not think separately about all the dogs or horses or fishes that we have ever seen, but we group all these animals into species, and it is usually the species that we think about when the idea of a dog or a horse or a herring emerges into our consciousness. When we think about a tramcar we do not think about all the separate vehicles that we have seen, nor about their colours, nor the advertisements on the boards outside, nor the people hanging on to the straps inside. Just so much of the experience of what is relevant to the purpose of our thought enters into our idea of the tramcar: it is a conceptual vehicle that we think about. Such is the nature of the concepts that form the basis of our reasoning: they are generalised aspects of our experience of nature, usually poorer in content than were the actually perceived things, except when it is necessary that some individual thing seen or otherwise experienced should be investigated or reasoned about. All our descriptions of nature are conceptual schemes. The world of perception, says William James, is too rich to be attended to all at once, but in conceptualising it we spread it out and make it thinner, and we mark out boundaries and division lines in it that do not really exist. It is this generalised nature that is the subject matter of our reasoning of pure science; and it is these concepts that form the matter of all our descriptions. We do not describe nature "as we see it," it is our conceptions that we write about. Genera and species and varieties do not really exist in the animate world: all these are logical categories generated by our thought, concepts that facilitate our descriptions. When an anatomist gives an account of the structure of an animal he does not say what it looks like, nor as a rule does he content himself by making a photograph of his dissections. For him the animal is a complex of muscles, skeleton, nerves, glands, and so on, and in his drawings all these things are given an individuality that they do not really possess. In the living creature there were no such sharply-distinguished organs as a good drawing represents: all are bound together and are continuous. But for practical convenience in description--that is, in the long run, that we may act upon these things, we isolate from each other aspects that are in reality one unitary whole.

The universe, that is, all that is given to us, presents itself as immediately perceived phenomena which are then conceptually transformed. It is an aggregate of things--gross matter, particles, molecules, atoms, and electrons. These things have separate existence and shape, so that each of them lies outside all other things--we apply to them the category of extension. They possess properties--that is, they are hard, or heavy, or hot, or cold, or they are coloured, or they smell, and so on--we thus apply to them the category of inherence. They are not things that are immutable, for they change in place, or are transformed in other ways, that is, they are acted upon by energies. But beneath the properties of the things, or the transformations that they undergo, we imagine something that has properties and which transforms: it is not convenient that we speak solely of attributes or transformations as entities in themselves, for we think of things as having properties and being subject to transformations. Thus we apply the category of substance.

Has this universe that we construct from the data of sensation objective reality? We are led quite naturally by our study of physiology to the notion of idealism. We see that our perception of things, that is, our knowledge of the universe, depends on the integrity of functioning of certain bodily structures, and upon the condition that in men in general this integrity of functioning is normal, that is, common to the great majority of mankind.

To say that a thing exists is to say that it is perceived in some way; that immediately or remotely it affects our state of consciousness. To say that the star Sirius exists is to say that the stimulation of the retina by a minute spot of light transmits certain molecular disturbances along the optic nerve, and that other molecular disturbances are set up in the tissues of the central nervous system. Even if we do not see those dark stars that we know to exist, there are still evidences of their being that in some way affect the instruments of the astronomer and lead to their being perceived. Even if we do not actually see the emanations from a radio-active substance, we can cause these emanations to produce changes in something that we can see. We speak of the star as a minute spot of coloured light. But if we are short-sighted the spot becomes a little flare, and if we are colour-blind the hue of the star is different from what it is to normal persons. If we put a drop of atropine into one eye and then close the other, objects appear to lose their distinctness, but if we close this eye and then open the other, the original sharpness of vision returns. When we are bilious, wisps and spots may appear on a sheet of white paper that at other times was blank. If we take an overdose of quinine, rustlings and singing noises become apparent even in conditions that ought to preclude all sensation of sound. If we have a bad cold, we do not smell substances which at other times strongly affect our olfactory membranes. When we become intoxicated, a host of aberrations of sense displace our normal perceptions of things.

Our perception of the universe, therefore, depends on the normal functioning of our organs of sense, that is, such modes of functioning as we can describe and communicate to others, and which are thus common to the majority of other men and women. These perceptions resulting from the normal functioning of the organs of sense constitute givenness, and we enlarge, or conceptualise this givenness and call it the subject matter of science. But what is this reality that we say is external to us? It is, we see, our inner consciousness. If we walk along a road in the dark we can feel what is the nature of the path on which we tread, whether stones or gravel, or sand or grass. But this feeling is obviously not in the soles of our boots, and neither is it in the skin of the feet, for we should feel nothing if the afferent nerves in the legs were severed. Is it then in the brain? It would appear to be there, but it disappears if certain tracts in the brain are injured.

Some such system of idealism must generally characterise a system of philosophy founded on pure reasoning. We cannot but feel that the universe that we construct is one that depends on our perceptions: it is our perceptions. The essence of a thing is that it is perceived. If there were no mind to perceive it, would it exist? The universe is our thought, and we, that is our thought, exist only in the Thought of an absolute Mind which we call God. Such is the metaphysics to which the study of sensation led Berkeley.

The materialism of the twentieth century, like the idealism of Berkeley, thus finds that there is something outside our own consciousness that possesses absolute existence. To the materialist it is the ether of space, and to Berkeley it is the existence of absolute Mind. But if our desire to avoid metaphysics is a genuine one, we must reject the notion of the universal ether no less than we must reject the notion of an absolute Mind, and we must rest content with pure phenomenalism. For each of us there can be no existence except that which is perceived or conceptualised. There is nothing but our own consciousness; there cannot even be an Ego which perceives; there is only perception. We never do really believe this in spite of our professions of reason. We find on strict self-analysis that we believe that there is an Ego that perceives and that there are other Egos that perceive, and that the universe which our Ego perceives is also the same universe that other Egos perceive. If we did not believe that there were other men and women that perceived--other consciousnesses like our own, all that part of our own behaviour that we call morality would be meaningless. In a philosophy of pure idealism other men and women are only phenomena; only bodies moving in nature. Why, then, should these elements of our consciousness influence the rest of our consciousness as if they were men and women like ourselves. All this amounts to saying that while our speculative thought suggests to us that all that exists is our stream of consciousness, our actions must convince us that there are other thinking individuals like ourselves.

Even if we do surrender ourselves to phenomenalism and try to believe that all that exists is our own consciousness, the fact of our duration would suggest to us that this present consciousness is not all. Our reality is not only that which is present in our minds now, but all that was ever present in our mind. All that we have ever thought and done persists and forms our conscious and unconscious experience. This past of ours is something that is ever being added to, or becoming incorporated with, our present state of consciousness; and if it is something other than that which we now perceive and conceptualise, it is something that has an existence of its own.

We must believe that there is something that we perceive, and not that we merely perceive. For the phases of our immediate givenness, that is, those things which were present in our minds from moment to moment of the past were connected together and had direction, and this direction was something that could not be influenced by our will, and may even have been contrary to our will. Something that is very hot always cools, a wheel that is revolving of itself always comes to a stop, a pendulum ceases to swing, a stone that is rolling down a hill continues to roll. Let us look back at a fire that was going out: it is now nearly dead; let us start a pendulum to swing and then go away: when we come back the pendulum is still swinging but the amplitude of its vibrations is now less than it was; let us look away from the stone that was falling: when we look again it is still falling but it is not where it was. In all our givenness, in all the phenomena that we perceive, there is something that is determined and unequivocal, something that goes its own way apart from our consciousness of it.

Above all, we have the conviction of absoluteness in our sense of personal identity. We, that is our Ego, are something that endures, and we can trace no beginning to our identity, and we have no intuition that it will cease to exist. Our Ego is now the same Ego that it was in the past, and round it something has accumulated--the memories of our former perceptions, and the habits that these have engendered. Did our Ego create this from itself? Was it not rather a centre of action which, residing in an existence other than itself--the absolute which we call the universe--modified that existence and continually acquired new relationships to it?

THE ORGANISM AS A MECHANISM

Add to tbrJar First Page Next Page

 

Back to top