Read Ebook: Rudimentary Treatise on the Construction of Locks by Dodd George Hobbs A C Tomlinson Charles Editor
Font size:
Background color:
Text color:
Add to tbrJar First Page Next Page Prev Page
Ebook has 449 lines and 75947 words, and 9 pages
Messrs. Mitchell and Lawton obtained a patent bearing date 7th March, 1815, for a lock in which were combined with the bolt and double-acting tumblers, a series of movable wards, and a revolving curtain for closing the key-hole. The action of the wards was peculiar. On introducing any key or instrument, and passing it round, a number of movable wards or pieces were thrown out so as to prevent the key from being turned back or withdrawn. It was necessary therefore to pass round the key so as to unlock the lock, and if that were not possible, as in the case of a false key being used, it was held permanently, and could only be released by destroying the lock, When the bolt was once shot, the wards were carried up so as to leave a clear passage for the key. This lock does not appear ever to have come into use, on account of the violence required in case a wrong key should be used either by accident or design.
The lock about to be described is the latest and most complete form of Chubb lock up to the date of the Great Exhibition. The various additions and alterations which have been made in the lock since that date will be noticed in a subsequent chapter.
These enormous numbers have been the cause of much of the wonderment which the six-tumbler locks have excited; and, as we shall see further on, the Bramah lock presents still more of the marvellous in respect to this ringing of the changes.
Mr. Owen further stated, that in order to compare the merits of Bramah's and Chubb's locks, he had suggested a mechanical contrivance, which was applied to one of Bramah's six-spring padlocks belonging to the Excise. It was hung upon a nail, in a vertical position, secure from lateral oscillation. A self-acting apparatus was then applied, consisting of a pipe with hexagonal grooves, and a stud or bit corresponding with the division of the lock, and secured to it by a spring. In the grooves of this pipe small slides were inserted, which pressed against the spring keys of the lock; to these slides were attached levers, acted upon by eccentrics, moved by a combination of wheels, whose teeth differed in number so as to perform the permutation required for the different depths of the spring keys, corresponding with those of the proper key to the lock. The automaton machine was set in motion by a line working over a barrel, and acted upon by a weight; and was thus left acting upon the mechanism for a considerable time. At right angles to the pipe or false key was attached a rod and weight; and when the notches in the spring keys were brought in a line with the plane of the plate or diaphragm of the lock, the rod and weight turned the false key, opened the lock, and stopped the further motion of the automaton. In that state the slides indicated the exact depth of the grooves in the proper key, and gave the form of a matrix by which to make a key similar to the original one. The automaton worked during a period varying from half an hour to three hours, according to the state of permutation of the apparatus at the moment of being applied, compared with that of the slides in the lock. We confess that it is difficult to understand the action of this automaton from Mr. Owen's description. We imagine that the false notches would effectually prevent the operation of the instrument, and openings would be required on each slide to bring it back, so as to meet the motions of the machine.
Mr. Owen did not state whether his apparatus had been successful with one only of Bramah's locks or with several; nor did he describe any apparatus invented with the view to the picking of Chubb's locks. He stated, however, that in order to ascertain the effect of friction on one of these last-named locks, it was subjected to the alternate rectilinear motion of a steam-engine in Portsmouth dockyard, and was locked and unlocked upwards of 460,000 times consecutively, without any appreciable wear being indicated by a gauge applied to the levers and the key, both before and after this alternate action. Mr. Owen concluded by expressing his individual opinion that Chubb's lock had never been picked. "The detector was the main feature of its excellence; and additional precaution, therefore, was only departing from its simplicity, and adding to the expense, without any commensurate advantage."
In a subsequent chapter the degree of security afforded by various descriptions of locks, and the obstacles which they present of being picked, will come under notice; we therefore now proceed to describe briefly a few other tumbler-locks, or application of the tumbler-principle.
In Mr. Somerford's lock, for which the Society of Arts gave a premium in 1818, an attempt was made to improve upon the ordinary action of tumblers. In most such locks, all the tumblers must ascend, although to different heights, before the stud of the bolt can pass through the slots; "which arrangement," says Mr. Somerford, "gives an opportunity of introducing a nail, or a piece of stout wire, into the lock, and thus raising the tumblers without the necessity of using the key." In his new lock, however, he made one lever to ascend while the other descended, by a somewhat complicated arrangement of slotted plates above and below the bolt. The key was so perforated as to be much endangered in respect to strength.
The lock invented by Mr. Nettlefold is so constructed, that when the bolt is shot out by the key, two teeth or quadrants are projected from the sides of the bolt, which take a firm hold of the plate fixed on the door-post or edge. This construction is said to answer well for sliding-doors.
Mr. Alfred Ainger, in 1820, received a silver medal from the Society of Arts for a draw-back spring latch, in which the objects proposed were the two following--to render the lock more difficult of violation by a pick than those ordinarily in use; and to apply to it a key of which no ordinary person could take an impress, and which would be difficult of access even in a workman's hand. The key is very peculiar; its pipe consists of three divisions, the section of the upper and lower divisions being circular, and that of the middle division triangular; the triangular portion is intended to give motion to some part of the interior of the lock during the rotation of the key. There are collars fixed on the extremity of the key, to act each on one tumbler; and there are modes, by varying the arrangement of these collars on an octagonal stem, to give something like a permutation to the number of variations to which the action of the key may be subject. The notches or slots are rather in the bolt than in the tumblers; and there are many peculiarities in the general arrangement.
In a lock invented and patented by Mr. Parsons, the tumblers are of a particular form, being hinged on a pivot at their centres, and working into and out of two notches cut in the under side of the bolt. It must be obvious that many variations in the adjustment of the tumblers of locks might be made, without vitiating the principle on which the action depends.
Many inventors have tried the use of an expanding web to the key, so planned that if the step of the web be long enough to reach the tumbler, it would be too long to pass through the key-hole; and therefore a principle of safety would operate by enabling the key to adjust itself at one moment to the size of the key-hole, and at another to the height of the tumbler. Mr. Machin of Wolverhampton invented such a key in 1827. The web of the key is movable on a countersunk pin, on which it can so far slide as to be drawn one-eighth of an inch from the barrel. The key-hole is of such a size as to admit the key only when the web is pressed close up to the barrel. When the key in this state is introduced, and is begun to be turned round, one of the notches in the web works into a raised circular edge of steel, placed eccentrically with regard to the lock-pin; so that as the key is turned, the web becomes drawn out, and is at its greatest elongation when it arrives at the tumblers: in the second half of its circular movement, the key becomes contracted to its original dimensions, and can then be removed from the lock.
Another mode of modifying the key has been introduced by Mr. Mackinnon, the object being to enable any person to change at will the pattern or arrangement of the movable parts of a lock and key; or to keep the key, when not actually in use, in such a state as to render it unavailing to any one but himself. It was a complex arrangement, which does not seem to have come much into use.
The lock invented by Mr. Williams, in 1839, may be designated a pin-lock, involving a principle analogous in many points to that of the Egyptian lock. This lock has a series of pins which reach through the cap, and are pressed to their places with a key like a comb or a rake-head. On the inner end of each pin is a flat piece of steel, in which is cut a notch for the passage of the bolt; but this passage is not clear until the notches in all the pieces of steel are in a right line. The pins are movable, and can be pushed either too far or not far enough to bring about the coincidence of position in the notches; and on this ground they are "double-acting." Now the teeth of the key are of irregular lengths, each having a length just suited for pushing the pin to the proper depth: any other lengths of teeth would fail to open the lock. There is a mechanism of springs and levers to shoot the bolt when the pins in the plate are rightly adjusted. The arrangements in respect to the key are singular and somewhat awkward. The teeth which lock the bolt are not the same as those which unlock it, the user having to change ends and adjust the bit to a socket-handle. This is one among many examples in which a lock embodies several principles, the inventor having set himself the task of combining the excellences of many diverse locks.
In respect to the tumbler-locks generally, the simplicity of action, the strength of construction, and the non-liability of disarrangement, have given them a high place among safety-locks. The only danger seemed to be, that any person once obtaining possession of the key could take an impression from it, and thence form a key which would command the lock. Attempts have been occasionally made to obviate this danger, by supplying the key with movable bits which could be changed at pleasure, so as to constitute any number of effectively different bits in succession. But the locks being so constructed that the bolt could only be moved when the tumblers were in a certain position, the owner was placed in this predicament: that it was useless to alter the arrangement of the bits in the key, unless the tumblers were altered in a corresponding manner; and this would entail the removal of the lock from the door, and the re-arrangement of the interior mechanism.
American locks on the tumbler-principle, and the relation which all such locks bear to the Bramah lock, will be better understood after the details of the following chapter.
THE BRAMAH LOCK.
"It is observable that those who are taken in the desperate occupation of house-breaking are always furnished with a number and variety of keys or other instruments adapted to the purpose of picking or opening locks; and it needs no argument to prove that these implements must be essential to the execution of their intentions. For unless they can secure access to the portable and most valuable part of the effects, which in most families are deposited under the imaginary security of locks, the plunder would seldom recompense the difficulty and hazard of the enterprise; and till some method of security be adopted by which such keys and instruments may be rendered useless, no effectual check or opposition can be given to the excessive and alarming practice of house-breaking.
"Being confident that I have contrived a security which no instrument but its proper key can reach; and which may be so applied as not only to defy the art and ingenuity of the most skilful workman, but to render the utmost force ineffectual, and thereby to secure what is most valued as well from dishonest servants as from the midnight ruffian, I think myself at liberty to declare , that all dependence on the inviolable security of locks, even of those which are constructed on the best principle of any in general use, is fallacious. To demonstrate this bold and alarming proposition, I shall first state the common principles which are applied in the art of lock-making; and by describing their operation in instruments differently constructed, prove to my intelligent readers that the best-constructed locks are liable to be secretly opened with great facility; and that the locks in common use are calculated only to induce a false confidence in their effect, and to throw temptation to dishonesty in the way of those who are acquainted with their imperfections, and know their inefficacy to the purpose of security" .
"Locks have been constructed, and are at present much used and held in great esteem, from which the picklock is effectually excluded; but the admission of false keys is an imperfection for which no locksmith has ever found a corrective; nor can this imperfection be remedied whilst the protection of the bolt is wholly confided to fixed wards. For if a lock of any given size be furnished with wards in as curious and complete a manner as it can be, those wards being necessarily expressed on what is termed by locksmiths the bit or web of the key, do not admit of a greater number of variations than can be expressed on that bit or web; when, therefore, as many locks have been completed of the given size as will include all the variations which the surface of the bit will contain, every future lock must be the counterpart of some former one, and the same key which opens the one will of course unlock the other. It hence follows that every lock which shall be fabricated on this given scale, beyond the number at which the capability of variation ends, must be as subject to the key of some other lock as to its own; and both become less secure as their counterparts become more numerous. This objection is confirmed by a reference to the locks commonly fixed on drawers and bureaus, in which the variations are few, and these so frequently repeated, from the infinite demand for such locks, that, even if it were formed to resist the picklock, they would be liable to be opened by ten thousand correspondent keys. And the same observation applies in a greater or less degree to every lock in which the variations are not endless.
"But if the variation of locks in which the bolt is guarded only by fixed wards could be multiplied to infinity, they would afford no security against the efforts of an ingenious locksmith; for though an artful and judicious arrangement of the wards, or other impediments, may render the passage to the bolt so intricate and perplexed as to exclude every instrument but its proper key, a skilful workman having access to the entrance will be at no loss to fabricate a key which shall tally as perfectly with the wards as if the lock had been open to his inspection. And this operation may not only be performed to the highest degree of certainty and exactness, but is conducted likewise with the utmost ease. For the block or bit, which is intended to receive the impression of the wards, being fitted to the keyhole, and the shank of the key bored to a sufficient depth to receive the pipe, nothing remains but to cover the bit with a preparation which, by a gentle pressure against the introductory ward, may receive its impression, and thus furnish a certain direction for the application of the file. The block or bit being thus prepared with a tally to the first ward, gains admission to the second; and a repetition of the means by which the first impression was obtained, enables the workman to proceed, till by the dexterous use of his file he has effected a free passage to the bolt. And in this operation he is directed by an infallible guide; for, the pipe being a fixed centre on which the key revolves without any variation, and the wards being fixed likewise, their position must be accurately described on the surface of the bit which is prepared to receive their impression. The key therefore may be formed and perfectly fitted to the lock without any extraordinary degree of genius or mechanical skill. It is from hence evident that endless variations in the disposition of fixed wards are not alone sufficient to the purpose of perfect security. I do not mean to subtract from the merit of such inventions, nor to dispute their utility or importance. Every approach towards perfection in the art of lock-making may be productive of much good, and is at least deserving of commendation; for if no higher benefit were to result from it, than the rendering difficult or impossible to many that which is still practicable and easy to a few, it furnishes a material security against those from whom the greatest mischiefs and dangers are to be apprehended."
There can be little doubt, in the present day, that Bramah did not over-rate the fallacies embodied in the system of wards for locks. He was sufficiently a machinist to detect the weak points in the ordinary locks; and, whatever may have been his over-estimate of his own lock , he was certainly guilty of no injustice to those who had preceded him; for their locks were substantially as he has described them. To understand the true bearings of his Dissertation too, we must remember that housebreaking had risen to a most daring height in London at the time he wrote ; and men's minds were more than usually absorbed by considerations relating to their doors and locks.
To shew how this insecurity arises, Mr. Bramah illustrates the matter in the following way: "Suppose the key with which the workman is making his way to the bolt to have passed the wards, and to be in contact with the most prominent of the tumblers. The impression, which the slightest touch will leave on the key, will direct the application of the file till sufficient space is prepared to give it a free passage. This being accomplished, the key will of course bear upon the tumbler which is most remote; and being formed by this process to tally with the face which the tumblers present, will acquire as perfect a command of the lock as if it had been originally made for the purpose. And the key, being thus brought to a bearing on all the tumblers at once, the benefit arising from the increase of their number, if multiplied by fifty, must inevitably be lost; for, having but one motion, they act only with the effect of one instrument."
It is worthy of notice, that even while thus shewing the weak points of the Barron lock, Mr. Bramah seems to have had in his mind some conception of infallibility or inviolability attainable by the lock in question. After speaking of the defect arising from the bad arrangement of the tumblers, he says: "But nothing is more easy than to remove this objection, and to obtain perfect security from the application of Mr. Barron's principle. If the tumblers, which project unequally and form a fixed tally to the key, were made to present a plane surface, it would require a separate and unequal motion to disengage them from the bolt; and consequently no impression could be obtained from without that would give any idea of their positions with respect to each other, or be of any use even to the most skilful and experienced workman in the formation of a false key. The correction of this defect would rescue the principle of Mr. Barron's lock, as far as I am capable of judging, from every imputation of error or imperfection; and, as long as it could be kept unimpaired, would be a perfect security. But the tumblers, on which its security depends, being of slight substance, exposed to perpetual friction--as well from the application of the key as from their own proper motion--and their office being such as to render the most trifling loss of metal fatal to their operation, they would need a further exertion of Mr. Barron's ingenuity to make them durable."
After the model-lock, which has just been described, was constructed, and found to corroborate the idea which was working in Mr. Bramah's mind, he proceeded to the construction of his barrel or cylinder-lock, embracing similar elements placed in more convenient juxta-position. In his Essay he gives an engraving to illustrate the principle on which his lock acts, rather in the manner of a diagram than as depicting any lock actually made; his main object being to impart a clear notion of the action of the slides which form such a distinguishing feature in his lock.
To facilitate the comprehension of this very curious and beautiful mechanism, the cylinder is shewn in section in the annexed fig. 39, the same letters and figures of reference being used as before. In the whole of this description we have spoken of six slides, and six only; but Bramah locks may be, and have been, constructed with a much larger number.
Mr. Bramah calculates the number of changes of position which the slides of his lock are capable of assuming before the right one would be attained. "Let us suppose the number of levers, slides, or other movables by which the lock is kept shut, to consist of twelve, all of which must receive a different and distinct change in their position or situation by the application of the key, and each of them likewise capable of receiving more or less than its due, either of which would be sufficient to prevent the intended effect. It remains, therefore, to estimate the number producible, which maybe thus attempted. Let the denomination of these slides be represented by twelve arithmetical progressionals; we find that the ultimate number of changes that may be made in their place or situation is 479,001,600; and by adding one more to that number of slides, they would then be capable of receiving a number of changes equal to 6,227,020,800; and so on progressively, by the addition of others in like manner to infinity. From this it appears that one lock, consisting of thirteen of the above-mentioned sliders, may be made to require the said immense number of keys, by which the lock could only be opened under all its variations."
AMERICAN LOCKS.
The lock-manufacture in America has undergone some such changes as in England. The insufficiency of wards to the attainment of security has been for many years known; and the unfitness of even tumblers to attain this end, without auxiliary contrivances, has been fully recognised for a dozen years back. In this, and in other mechanical arts, the American machinists depended primarily on the invention of the artisans in the mother country, rather than on those of any continental European state. But the development of the art in the United States has not been wanting in originality; the varieties of locks have been very numerous, and many of them exceedingly ingenious. It is not necessary, however, to describe or depict any of those of simple form. The warded locks of different countries very much resemble each other; the intricate warded locks made in France in the last century have long fallen into disuse, in consequence of the general conviction that no arrangement of wards, however intricate, can afford the degree of security required in a good lock. It will be more to the purpose, therefore, to proceed at once to a notice of those American locks which, during the last few years, have acquired some celebrity; first, however, noticing one of older date.
Stansbury's lock, invented in the United States about forty years ago, may be regarded as a modification of the Egyptian lock. It had a bolt, case, and key-hole somewhat similar to those of modern locks; but there were peculiarities of construction in other respects. There was a revolving plate, pierced with a series of holes, and having a bit or pin which moved the bolt. On the lock-case were a series of springs, each having a pin at one end; and the arrangement was such that, when the bolt was locked or unlocked, each pin would be pressed into some one of the holes. Like as in the Egyptian lock , each pin had to be pushed out, and all of them simultaneously, to allow the plate to turn and move the bolt. The key was made with a barrel and bit; and on the front end of the bit was a series of pins corresponding in position with the holes in the plate. The mode of locking or unlocking was as follows: the key was inserted in the key-hole, and turned to a certain position; it was then pressed in with some force, until the pins on the key met those in the plate; when the latter, yielding to the pressure, left the plate free to turn and move the bolt. Modifications of the Egyptian lock, more or less resembling this, have been brought out in some variety on both sides of the Atlantic; but scarcely any have equalled in simplicity the curious wooden relic of by-gone ingenuity in the art of lock-making.
A lock made a few years ago by Mr. Yale, in the United States, somewhat resembles the Bramah lock in having a cylinder or barrel, or rather two concentric cylinders, one working within the other. These cylinders are held together by pins which pass through them both into the key-hole. On the back of the inner cylinder is a pin that fits into a slot in the bolt, and moves it whenever the cylinder is turned. The pins that hold the cylinders together are each cut in two; the pieces of the various pins differing in lengths as irregularly as possible. The key is so peculiarly formed, that, on inserting it in the key-hole, it thrusts the pins radially outwards; each pin being pushed just so far that the joint of the pin shall coincide with the joint between the two cylinders. The inner cylinder can then be turned, by which the bolt is locked or unlocked. If, by the use of a false key, any pin be pushed in too far, it will be as ineffectual in opening the lock as if it were not thrust in far enough; and some of these locks having been made with as many as forty pins, the chances are very numerous against the right combination being hit upon. There is a combination of something like the Egyptian with something like the Bramah lock, here attempted.
One of the principal constructions adopted in America a few years back for bank-locks is that of Dr. Andrews of Perth Amboy, in New Jersey. It was up to that time believed that the best locks, both of England and America, were proof against any attempts at picking derived from knowledge obtained by inspection through the key-hole; but there still remained the danger that the sight of the true key, or the possession thereof, for only a few minutes, would enable a dishonest person to produce a duplicate. It was to contend against this difficulty that Dr. Andrews directed his attention; and he sought to obtain the desired object by constructing a lock, the interior mechanism of which could be changed at pleasure. The lock of his invention is furnished with a series of tumblers and a detector. The tumblers are susceptible of being arranged in any desired order; and the key has movable bits which can be arranged so as to correspond with the tumblers. When the lock is fixed in its place, no change can be made in the tumblers, and consequently only one arrangement of the bits of the key will suit for the shooting and withdrawing of the bolt. The owner can, however, before the fixing of the bolt, adopt any arrangement of tumblers and bits which he may choose. But though the tumblers cannot be actually re-arranged in any new order within the lock while the latter is fixed, yet by an ingenious contrivance the tumblers can be so acted upon as to render the lock practically different from its former self. The purchaser receives with his lock a series of small steel rings, each ring corresponds in thickness with the thickness of some one of the bits of the key; so that, by suitable adjustment, any one of the bits may be removed from the key, and a ring be substituted in its place. The effect of this substitution is, that the particular tumbler which corresponds with the ring is not raised by it; it is drawn out with the bolt, as if it were part of the bolt itself. Supposing the lock to be locked by this means, the original key would not now unlock it; for one of the tumblers has now been displaced, and can only be re-adjusted by the same ring which displaced it. If an attempt be made to open the lock by the original key, or by the key in its original adjustment, a detector is set in action, which indicates that a false key or other instrument has been put into the lock. One, or more than one, of the bits may be removed from the key, and rings be substituted, and consequently one or more of the tumblers may be disturbed in this peculiar way; so that the lock may change its character in all those permutating varieties which are so observable in most "safety-locks." The shape of the tumblers is, of course, such as to facilitate this action; they have each an elongated slot, and also two notches; when a tumbler is raised by one of the bits of the key, one of the notches closes around a stump fitted into the case of the lock, and prevents the tumbler from being moved onward with the bolt; but when a ring has been substituted for a bit on the key, the tumbler cannot be raised at all; it is carried onward by a stump on the bolt.
It is, however, desirable to trace the course of improvements more in detail, because every successive change illustrates one or other of the several properties required in a good lock. Messrs. Day and Newell's lock was not finally brought to an efficient form without many attempts more or less abortive. Mr. Newell conceived the idea of applying a second series of tumblers, so placed as to be acted on by the first series. Each of these secondary tumblers had an elongated slot, such that a screw could pass through all of them; the screw having a clamp to overlap the tumblers on the inside of the lock. The head of the screw rested in a small round hole on the back of the lock, so placed as to form a secondary key-hole, to which a small key was fitted. There was thus a double system of locking, effected in the following way: when the large key had been applied, and had begun to act on the primary tumblers, the small key was used to operate on the clamp-screw, and thus bind all of the secondary tumblers together, ensuring their position at the exact heights or distances to which the primary key had caused them to be lifted. The bolt was then free to be shot, and the first series of tumblers reverted to their original position.
But such an arrangement has obvious inconveniences. Few persons would incur the trouble of using two keys; and besides this, there were not wanting certain defects in the action and reaction of the several parts; for if the clamp-screw were to be left unreleased, the first series of tumblers would be upheld by the second series in such a way that the exact impression of the lengths of the several bits of the key could be obtained through the key-hole while the lock was unlocked or the bolt unshot. To remedy one or both of these evils was the next object of Mr. Newell's attention. He made a series of notches or teeth in each of the secondary tumblers, corresponding in mutual distance with the steps or bits of the key; and opposite these notched edges he placed a dog or lever, with a projecting tooth suitable to fall into the notches when adjusted properly in relation to each other. When the key was used, the primary tumblers were raised in the usual way, and acted on the secondary tumblers; these latter were so thrown that the dog-tooth caught in the notches and held them fast, thereby rendering the same service as the clamp-screw and the small key in the former arrangement. No other relative position of the bits of the key could now unlock the lock.
Still, improvement as it was, this change was not enough; Mr. Newell found that his lock, like all the locks that had preceded it, was capable of being picked by a clever practitioner; and candidly admitting the fact, he sought to obtain some new means of security. He tried what a series of complicated wards would do, in aid of the former mechanism; but the result proved unsatisfactory. His next principle was to provide a number of false notches on the abutting parts of the primary and secondary tumblers, with alterations in other parts of the apparatus. The theory now depended upon was this, that if the bolt were subjected to pressure, the tumblers would be held fast by false notches, and could not be raised by any lock-picking instrument. To increase the security, a steel-curtain was so adjusted as to cover, or at least protect, the key-hole. Great anticipations were entertained of this lock, but they were destined to be negatived. A clever American machinist, Mr. Pettit, accepted Messrs. Day and Newell's challenge ; he succeeded in picking the lock, and thus won the prize.
Fig. 43 represents the key in two different forms, or with the bits differently arranged. Either form will lock the lock, but the other will not then unlock it. The end of the key is represented in fig. 44, shewing the screw which fixes the bits in their places. The bits for a six-bitted key are shewn separately in fig. 45.
In 1847 the parautoptic lock was exhibited at Vienna before the National Mechanics' Institute of Lower Austria; and towards the close of the year Mr. Belmont, consul-general of Austria at New York, placed in the hands of Messrs. Day and Newell a letter, a diploma, and a gold medal, forwarded by the Institute. The letter was from the president of the Institute to Mr. Newell, and was couched in the following terms:
"The Institute of Lower Austria, at its last monthly session, has passed the unanimous resolution to award to you its gold medal, as an acknowledgment of the uncommon superiority of the combination-lock of your invention; and this resolution was ratified in its general convention held on the 10th instant.
"Whilst I, as president of this Institute, rejoice in seeing the services which by this invention you have rendered to the locksmith's art thus appreciated and recognised, I transmit to you, enclosed, the said medal, together with the documents relating to it; at the same time availing myself of this opportunity to assure you of my esteem.
"COLLOREDO MANNSFELD.
"Vienna, May 31st, 1847."
The diploma and the medal were similar to other honorary distinctions of the same class, and need not be described here; but the report of the special committee may be given, as it expresses the opinions of the Viennese machinists on the relative principles by which safety is sought to be obtained in different kinds of locks.
REPORT
GENTLEMEN:--At our last monthly meeting, Mr. Reuter, Aulic Councillor and Secretary of the Institute, directed your attention to a newly invented lock of Mr. Newell, of North America, which was represented as excelling all other changeable combination-locks hitherto known, and as being without a rival.
The Special Committee which was intrusted with the examination of this lock, and of the motions made by the said Secretary, and accepted by the Institute, has conferred on me the honour of making you acquainted with the results of its investigations.
The attention of your committee was chiefly occupied with the three questions proposed by the said Aulic Councillor in relation to the lock in question:
First: Whether the idea of Mr. Newell was of any practical value for already existing and still-to-be-invented combination-locks;
Secondly: Whether the idea was of sufficient importance to be published and minutely described in the transactions of the said Institute; and
Thirdly: Whether the merits of the inventor were of sufficient importance to entitle him to a distinction from the said Institute.
The deliberations on the first question, viz. the newness of the idea, and of its practical value, would of necessity enlist the particular attention of your committee, especially since by far the greater number of its members are by their avocation called upon to be interested in the execution of all kinds of locks.
It is therefore the unanimous opinion of your committee, that the idea of the American Parautoptic Combination-Lock is entirely new and without example.
The combination-locks with keys have, with few exceptions, such an arrangement that a determinate number of movable parts must by the turning of the key be raised or lifted into a certain position, if it is desired to project the bolt, or, what is the same thing, to lock it out; consequently these parts, or, as they are technically termed, tumblers, could not be transposed or changed, from the circumstance that the key-bit was one solid piece, with various steps or notches adapted to the several tumblers, and one impression from it destroyed the security of the lock.
Add to tbrJar First Page Next Page Prev Page
