Read Ebook: A Preliminary Dissertation on the Mechanisms of the Heavens by Somerville Mary
Font size:
Background color:
Text color:
Add to tbrJar First Page Next Page
Ebook has 59 lines and 16378 words, and 2 pages
if the sea together with the earth formed one solid mass. But although these circumstances be inefficient, a variation in the mean temperature would certainly occasion a corresponding change in the velocity of rotation: for in the science of dynamics, it is a principle in a system of bodies, or of particles revolving about a fixed centre, that the momentum, or sum of the products of the mass of each into its angular velocity and distance from the centre is a constant quantity, if the system be not deranged by an external cause. Now since the number of particles in the system is the same whatever its temperature may be, when their distances from the centre are diminished, their angular velocity must be increased in order that the preceding quantity may still remain constant. It follows then, that as the primitive momentum of rotation with which the earth was projected into space must necessarily remain the same, the smallest decrease in heat, by contracting the terrestrial spheroid, would accelerate its rotation, and consequently diminish the length of the day. Notwithstanding the constant accession of heat from the sun's rays, geologists have been induced to believe from the nature of fossil remains, that the mean temperature of the globe is decreasing.
The relative quantity of heat received by the earth at different moments during a single revolution, varies with the position of the perigee of its orbit, which accomplishes a tropical revolution in 20935 years. In the year 1250 of our era, and 29653 years before it, the perigee coincided with the summer solstice; at both these periods the earth was nearer the sun during the summer, and farther from him in the winter than in any other position of the apsides: the extremes of temperature must therefore have been greater than at present; but as the terrestrial orbit was probably more elliptical at the distant epoch, the heat of the summers must have been very great though possibly compensated by the rigour of the winters; at all events, none of these changes affect the length of the day.
It appears from the marine shells found on the tops of the highest mountains, and in almost every part of the globe, that immense continents have been elevated above the ocean, which must have which must have engulphed others. Such a catastrophe would be occasioned by a variation in the position of the axis of rotation on the surface of the earth; for the seas ending to the new equator would leave some portions of the globe, and overwhelm others.
But theory proves that neither nutation, precession, nor any of the disturbing forces that affect the system, have the smallest influence on the axis of rotation, which maintains a permanent position on the surface, if the earth be not disturbed in its rotation by some foreign cause, as the collision of a comet which may have happened in the immensity of time. Then indeed, the equilibrium could only have been restored by the rushing of the seas to the new equator, which they would continue to do, till the surface was every where perpendicular to the direction of gravity. But it is probable that such an accumulation of the waters would not be sufficient to restore equilibrium if the derangement had been great; for the mean density of the sea is only about a fifth part of the mean density of the earth, and the mean depth even of the Pacific ocean is not more than four miles, whereas the equatorial radius of the earth exceeds the polar radius by twenty-five or thirty miles; consequently the influence of the sea on the direction of gravity is very small; and as it appears that a great change in the position of the axes is incompatible with the law of equilibrium, the geological phenomena must be ascribed to an internal cause. Thus amidst the mighty revolutions which have swept innumerable races of organized beings from the earth, which have elevated plains, and buried mountains in the ocean, the rotation of the earth, and the position of the axis on its surface, have undergone but slight variations.
It is beyond a doubt that the strata increase in density from the surface of the earth to its centre, which is even proved by the lunar inequalities; and it is manifest from the mensuration of arcs of the meridian and the lengths of the seconds pendulum that the strata are elliptical and concentric. This certainly would have happened if the earth had originally been fluid, for the denser parts must have subsided towards the centre, as it approached a state of equilibrium; but the enormous pressure of the superincumbent mass is a sufficient cause for these phenomena. Professor Leslie observes, that air compressed into the fiftieth part of its volume has its elasticity fifty times augmented; if it continue to contract at that rate, it would, from its own incumbent weight, acquire the density of water at the depth of thirty-four miles. But water itself would have its density doubled at the depth of ninety-three miles, and would even attain the density of quicksilver at a depth of 362 miles. In descending therefore towards the centre through 4000 miles, the condensation of ordinary materials would surpass the utmost powers of conception. But a density so extreme is not borne out by astronomical observation. It might seem therefore to follow, that our planet must have a widely cavernous structure, and that we tread on a crust or shell, whose thickness bears a very small proportion to the diameter of its sphere. Possibly too this great condensation at the central regions may be counterbalanced by the increased elasticity due to a very elevated temperature. Dr. Young says that steel would be compressed into one-fourth, and stone into one-eighth of its bulk at the earth's centre. However we are yet ignorant of the laws of compression of solid bodies beyond a certain limit; but, from the experiments of Mr. Perkins, they appear to be capable of a greater degree of compression than has generally been imagined.
It appears then, that the axis of rotation is invariable on the surface of the earth, and observation shows, that were it not for the action of the sun and moon on the matter at the equator, it would remain parallel to itself in every point of its orbit.
The attraction of an exterior body not only draws a spheroid towards it; but, as the force varies inversely as the square of the distance, it gives it a motion about its centre of gravity, unless when the attracting body is situated in the prolongation of one of the axes of the spheroid.
The mean annual precession is subject to a secular variation; for although the change in the plane of the ecliptic which is the orbit of the sun, be independent of the form of the earth, yet by bringing the sun, moon and earth into different relative positions from age to age, it alters the direct action of the two first on the prominent matter at the equator; on this account the motion of the equinox is greater by 0"?455 now than it was in the lime of Hipparchus; consequently the actual length of the tropical year is about 4"?154 shorter than it was at that time. The utmost change that it can experience from this cause amounts to 43".
Such is the secular motion of the equinoxes, but it is sometimes increased and sometimes diminished by periodic variations, whose periods depend on the relative positions of the sun and moon with regard to the earth, and occasioned by the direct action of these bodies on the equator. Dr. Bradley discovered that by this action the moon causes the pole of the equator to describe a small ellipse in the heavens, the diameters of which are 16" and 20". The period of this inequality is nineteen years, the time employed by the nodes of the lunar orbit to accomplish a revolution. The sun causes a small variation in the description of this ellipse; it runs through its period in half a year. This nutation in the earth's axis affects both the precession and obliquity with small periodic variations; but in consequence of the secular variation in the position of the terrestrial orbit, which is chiefly owing to the disturbing energy of Jupiter on the earth, the oblique of the ecliptic is annually diminished by 0"?52109. With regard to the fixed stars, this variation in the course of ages may amount to tea or eleven degrees; but the obliquity of the ecliptic to the equator can never vary more than two or three degrees, since the equator will follow in some measure the motion of the ecliptic.
It is evident that the places of all the celestial bodies are affected by precession and nutation, and therefore all observations of them must be corrected for these inequalities.
The densities of bodies are proportional to their masses divided by their volumes; hence if the sun and planets be assumed to be spheres, their volumes will be as the cubes of their diameters. Now the apparent diameters of the sun and earth at their mean distance, are 1922" and 17"?08, and the mass of the earth is the 1/354936th part of that of the sun taken as the unit; it follows therefore, that the earth is nearly four times as dense as the sun; but the sun is so large that his attractive force would cause bodies to fall through about 450 feet in a second; consequently if he were even habitable by human beings, they would be unable to move, since their weight would be thirty times as great as it is here. A moderate sized man would weigh about two tons at the surface of the sun. On the contrary, at the surface of the four new planets we should be so light, that it would be impossible to stand from the excess of our muscular force, for a man would only weigh a few pounds. All the planets and satellites appear to be of less density than the earth. The motions of Jupiter's satellites show that his density increases towards his centre; and the singular irregularities in the form of Saturn, and the great compression of Mars, prove the internal structure of these two planets to be very far from uniform.
The returns of the sun to the same meridian, and to the same equinox or solstice, have been universally adopted as the measure of our civil days and years. The solar or astronomical day is the time that elapses between two consecutive noons or midnights; it is consequently longer than the sidereal day, on account of the proper motion of the sun during a revolution of the celestial sphere; but as the sun moves with greater rapidity at the winter than at the summer solstice, the astronomical day is more nearly equal to the sidereal day in summer than in winter. The obliquity of the ecliptic also affects its duration, for in the equinoxes the arc of the equator is less than the corresponding arc of the ecliptic, and in the solstices it is greater. The astronomical day is therefore diminished in the first case, and increased in the second. If the sun moved uniformly in the equator at the rate of 59' 8"?3 every day, the solar days would be all equal; the time therefore, which is reckoned by the arrival of an imaginary sun at the meridian, or of one which is supposed to move in the equator, is denominated mean solar time, such as is given by clocks and watches in common life: when it is reckoned by the arrival of the real sun at the meridian, it is apparent time, such as is given by dials. The difference between the time shown by a clock and a dial is the equation of time given in the Nautical Almanac, and sometimes amounts to as much as sixteen minutes. The apparent and mean time coincide four times in the year.
Astronomers begin the day at noon, but in common reckoning the day begins at midnight. In England it is divided into twenty-four hours, which are counted by twelve and twelve; but in France, astronomers adopting decimal division, divide the day into ten hours, the hour into one hundred minutes, and the minute into a hundred seconds, because of the facility in computation, and in conformity with their system of weights and measures. This subdivision is not used in common life, nor has it been adopted in any other country, though their scientific writers still employ that division of time. The mean length of the day, though accurately determined, is not sufficient for the purposes either of astronomy or civil life. The length of the year is pointed out by nature as a measure of long periods; but the incommensurability that exists between the lengths of the day, and the revolutions of the sun, renders it difficult to adjust the estimation of both in whole numbers. If the revolution of the sun were accomplished in 365 days, all the years would be of precisely the same number of days, and would begin and end with the sun at the same point of the ecliptic; but as the sun's revolution includes the fraction of a day, a civil year and a revolution of the sun have not the same duration. Since the fraction is nearly the fourth of a day, four years are nearly equal to four revolutions of the sun, so that the addition of a supernumerary day every fourth year nearly compensates the difference; but in process of time further correction will be necessary, because the fraction is less than the fourth of a day. The period of seven days, by far the most permanent division of time, and the most ancient monument of astronomical knowledge, was used by the Brahmins in India with the same denominations employed by us, and was alike found in the Calendars of the Jews, Egyptians, Arabs, and Assyrians; it has survived the fall of empires, and has existed among all successive generations, a proof of their common origin.
The new moon immediately following the winter solstice in the 707th year of Rome was made the 1st of January of the first year of Caesar; the 25th of December in his 45th year, is considered as the date of Christ's nativity; and Caesar's 46th year is assumed to be the first of our era. The preceding year is called the first year before Christ by chronologists, but by astronomers it is called the year 0. The astronomical year begins on the 31st of December at noon; and the date of an observation expresses the days and hours which actually elapsed since that time.
Some remarkable astronomical eras are determined by the position of the major axis of the solar ellipse. Moving at the rate of 61"?906 annually, it accomplishes a tropical revolution in 20935 years. It coincided with the line of the equinoxes 4000 or 4089 years before the Christian era, much about the time chronologists assign for the creation of man. In 6485 the major axis will again coincide with the line of the equinoxes, but then the solar perigee will coincide with the equinox of spring; whereas at the creation of man it coincided with the autumnal equinox. In the year 1250 the major axis was perpendicular to the line of the equinoxes, and then the solar perigee coincided with the solstice of winter, and the apogee with the solstice of summer. On that account La Place proposed the year 1250 as a universal epoch, and that the vernal equinox of that year should be the first day of the first year.
The variations in the positions of the solar ellipse occasion corresponding changes in the length of the seasons. In its present position spring is shorter than summer, and autumn longer than winter; and while the solar perigee continues as it now is, between the solstice of winter and the equinox of spring, the period including spring and summer will be longer than that including autumn and winter: in this century the difference is about seven days. These intervals will be equal towards the year 6485, when the perigee comes to the equinox of spring. Were the earth's orbit circular, the seasons would be equal; their differences arise from the eccentricity of the earth's orbit, small as it is; but the changes are so gradual as to be imperceptible in the short space of human life.
No circumstance in the whole science of astronomy excites a deeper interest than its application to chronology. 'Whole nations,' says La Place, 'have been swept from the earth, with their language, arts and sciences, leaving but confused masses of ruin to mark the place where mighty cities stood; their history, with the exception of a few doubtful traditions, has perished; but the perfection of their astronomical observations marks their high antiquity, fixes the periods of their existence, and proves that even at that early period they must have made considerable progress in science.'
The ancient state of the heavens may now be computed with great accuracy; and by comparing the results of computation with ancient observations, the exact period at which they were made may be verified if true, or if false, their error may be detected. If the date be accurate, and the observation good, it will verify the accuracy of modern tables, and show to how many centuries they may be extended, without the fear of error. A few examples will show the importance of this subject.
At the solstices the sun is at his greatest distance from the equator, consequently his declination at these times is equal to the obliquity of the ecliptic, which in former times was determined from the meridian length of the shadow of the style of a dial on the day of the solstice. The lengths of the meridian shadow at the summer and winter solstice are recorded to have been observed at the city of Layang, in China, 1100 years before the Christian era. From these, the distances of the sun from the zenith of the city of Layang are known. Half the sum of these zenith distances determines the latitude, and half their difference gives the obliquity of the ecliptic at the period of the observation; and as the law of the variation in the obliquity is known, both the time and place of the observations have been verified by computation from modern tables. Thus the Chinese had made some advances in the science of astronomy at that early period; the whole chronology of the Chinese is founded on the observations of eclipses, which prove the existence of that empire for more than 4700 years. The epoch of the lunar tables of the Indians, supposed by Bailly to be 3000 before the Christian era, was proved by La Place from the acceleration of the moon, not to be more ancient than the time of Ptolemy. The great inequality of Jupiter and Saturn whose cycle embraces 929 years, is peculiarly fitted for marking the civilization of a people. The Indians had determined the mean motions of these two planets in that part of their periods when the apparent menu motion of Saturn was at the slowest, and that of Jupiter the most rapid. The periods in which that happened were 3102 years before the Christian era, and the year 1491 after it.
The returns of comets to their perihelia may possibly mark the present state of astronomy to future ages.
A knowledge of astronomy leads to the interpretation of hieroglyphical characters, since astronomical signs are often found on the ancient Egyptian monuments, which were probably employed by the priests to record dates. On the ceiling of the portico of a temple among the ruins of Tentyris, there is a long row of figures of men and animals, following each other in the some direction among these are the twelve signs of the zodiac, placed according to the motion of the sun: it is probable that the first figure in the procession represents the beginning of the year. Now the first is the Lion as if coming out of the temple; and as it is well known that the agricultural year of the Egyptians commenced at the solstice of summer, the epoch of the inundations of the Nile, if the preceding hypothesis be true, the solstice at the time the temple was built must have happened in the constellation of the lion; but as the solstice now happens 21? 6' north of the constellation of the Twins, it is easy to compute that the zodiac of Tentyris must have been made 4000 years ago.
The author had occasion to witness an instance of this most interesting application of astronomy, in ascertaining the dale of a papyrus sent from Egypt by Mr. Salt, in the hieroglyphical researches of the late Dr. Thomas Young, whose profound and varied acquirements do honour not only to his country, but to the age in which he lived. The manuscript was found in a mummy case; it proved to be a horoscope of the age of Ptolemy, and its antiquity was determined from the configuration of the heavens at the time of its construction.
The form of the earth furnishes a standard of weights and measures for the ordinary purposes of life, as well as for the determination of the masses and distances of the heavenly bodies. The length of the pendulum vibrating seconds in the latitude of London forms the standard of the British measure of extension. Its length oscillating in vacuo at the temperature of 62? of Fahrenheit, and reduced to the level of the sea, was determined by Captain Kater, in parts of the imperial standard yard, to be 39.1387 inches. The weight of a cubic inch of water at the temperature of 62? Fahrenheit, barometer 30, was also determined in parts of the imperial troy pound, whence a standard both of weight and capacity is deduced. The French have adopted the metre for their unit of linear measure, which is the ten millionth part of that quadrant of the meridian passing through Formentera and Greenwich, the middle of which is nearly in the forty-fifth degree of latitude. Should the national standards of the two countries be lost in the vicissitudes of human affairs, both may be recovered, since they are derived from natural standards presumed to be invariable. The length of the pendulum would be found again with more facility than the metre; but as no measure is mathematically exact, an error in the original standard may at length become sensible in measuring a great extent, whereas the error that must necessarily arise in measuring the quadrant of the meridian is rendered totally insensible by subdivision in taking its ten millionth part. The French have adopted the decimal division not only in time, but in their degrees, weights, and measures, which affords very great facility in computation. It has not been adopted by any other people; though nothing is more desirable than that all nations should concur in using the same division and standards, not only on account of the convenience, but as affording a more definite idea of quantity. It is singular that the decimal division of the day, of degrees, weights and measures, was employed in China 4000 years ago; and that, at the time Ibn Yunus made his observations at Cairo, about the year 1000, the Arabians were in the habit of employing the vibrations of the pendulum in their astronomical observations.
One of the most immediate and striking effects of a gravitating force external to the earth is the alternate rise and fall of the surface of the sea twice in the course of a lunar day, or 24^h 50^m 48^s of mean solar time. As it depends on the action of the sun and moon, it is classed among astronomical problems, of which it is by far the most difficult and the least satisfactory. The form of the surface of the ocean in equilibrio, when revolving with the earth round its axis, is an ellipsoid flattened at the poles; but the action of the sun and moon, especially of the moon, disturbs the equilibrium of the ocean.
If the moon attracted the centre of gravity of the earth and all its particles with equal and parallel forces, the whole system of the earth and the waters that cover it, would yield to these forces with a common motion, and the equilibrium of the seas would remain undisturbed. The difference of the forces, and the inequality of their directions, alone trouble the equilibrium.
It is proved by daily experience, as well as by strict mechanical reasoning, that if a number of waves or oscillations be excited in a fluid by different forces, each pursues its course, and has its effect independently of the rest. Now in the tides there are three distinct kinds of oscillations, depending on different causes, producing their effects independently of each other, which may therefore be estimated separately.
The oscillations of the first kind which are very small, are independent of the rotation of the earth; and as they depend on the motion of the disturbing body in its orbit, they are of long periods. The second kind of oscillations depends on the rotation of the earth, therefore their period is nearly a day: and the oscillations of the third kind depend on an angle equal to twice the angular rotation of the earth; and consequently happen twice in twenty-four hours. The first afford no particular interest, and are extremely small; but the difference of two consecutive tides depends on the second. At the time of the solstices, this difference which, according to Newton's theory, ought to be very great, is hardly sensible on our shores. La Place has shown that this discrepancy arises from the depth of the sea, and that if the depth were uniform, there would be no difference in the consecutive tides, were it not for local circumstances: it follows therefore, that as this difference is extremely small, the sea, considered in a large extent, must be nearly of uniform depth, that is to say, there is a certain mean depth from which the deviation is not great. The mean depth of the Pacific Ocean is supposed to be about four miles, that of the Atlantic only three. From the formulae which determine the difference of the consecutive tides it is also proved that the precession of the equinoxes, and the nutation in the earth's axis, are the same as if the sea formed one solid mass with the earth.
The third kind of oscillations are the semidiurnal tides, so remarkable on our coasts; they are occasioned by the combined action of the sun and moon, but as the effect of each is independent of the other, they may be considered separately.
The particles of water under the moon are more attracted than the centre of gravity of the earth, in the inverse ratio of the square of the distances; hence they have a tendency to leave the earth, but are retained by their gravitation, which this tendency diminishes. On the contrary, the moon attracts the centre of the earth more powerfully than she attracts the particles of water in the hemisphere opposite to her; so that the earth has a tendency to leave the waters but is retained by gravitation, which this tendency again diminishes. Thus the waters immediately under the moon are drawn from the earth at the same time that the earth is drawn from those which are diametrically opposite to her; in both instances producing an elevation of the ocean above the surface of equilibrium of nearly the same height; for the diminution of the gravitation of the particles in each position is almost the same, on account of the distance of the moon being great in comparison of the radius of the earth. Were the earth entirely covered by the sea, the water thus attracted by the moon would assume the form of an oblong spheroid, whose greater axis would point towards the moon, since the columns of water under the moon and in the direction diametrically opposite to her are rendered lighter, in consequence of the diminution of their gravitation in order to preserve the equilibrium, the axes 90? distant would be shortened. The elevation, on account of the smaller space to which it is confined, is twice as great as the depression, because the contents of the spheroid always remain the same. The effects of the sun's attraction are in all respects similar to those of the moon's, though really less in degree, on account of his distance; he therefore only modifies the form of this spheroid a little. If the waters were capable of instantly assuming the form of equilibrium, that is, the form of the spheroid, its summit would always point to the moon, notwithstanding the earth's rotation; but on account of their resistance, the rapid motion produced in them by rotation prevents them from assuming at every instant the form which the equilibrium of the forces acting on them requires. Hence, on account of the inertia of the waters, if the tides be considered relatively to the whole earth and open sea, there is a meridian about 30? eastward of the moon, where it is always high water both in the hemisphere where the moon is, and in that which is opposite. On the west side of this circle the tide is flowing, on the east it is ebbing, and on the meridian at 90? distant, it is everywhere low water. It is evident that these tides must happen twice in a day, since in that time the rotation of the earth brings the same point twice under the meridian of the moon, once under the superior and once under the inferior meridian.
In the semidiurnal tides there are two phenomena particularly to be distinguished, one that happens twice in a month, and the other twice in a year.
The first phenomenon is, that the tides are much increased in the syzigies, or at the time of new and full moon. In both cases the sun and moon are in the same meridian, for when the moon is new they are in conjunction, and when she is full they are in opposition. In each of these positions their action is combined to produce the highest or spring tides under that meridian, and the lowest in those points that are 90? distant. It is observed that the higher the sea rises in the full tide, the lower it is in the ebb. The neap tides lake place when the moon is in quadrature, they neither rise so high nor sink so low as the spring tides. The spring tides are much increased when the moon is in perigee. It is evident that the spring tides must happen twice a month, since in that time the moon is once new and once full.
The second phenomenon in the tides is the augmentation which occurs at the time of the equinoxes when the sun's declination is zero, which happens twice every year. The greatest tides take place when a new or full moon happens, near the equinoxes while the moon is in perigee. The inclination of the moon's orbit on the ecliptic is 5? 9'; hence in the equinoxes the action of the moon would be increased if her node were to coincide with her perigee. The equinoctial gales often raise these tides to a great height. Beside these remarkable variations, there are others arising from the declination of the moon, which has a great influence on the ebb and flow of the waters.
Both the height and time of high water are thus perpetually changing; therefore, in solving the problem, it is required to determine the heights to which they rise, the times at which they happen, and the daily variations.
The periodic motions of the waters of the ocean on the hypothesis of an ellipsoid of revolution entirely covered by the sea, are very far from according with observation; this arises from the very great irregularities in the surface of the earth, which is but partially covered by the sea, the variety in the depths of the ocean, the manner in which it is spread out on the earth, the position and inclination of the shores, the currents, the resistance the waters meet with, all of them causes which it is impossible to estimate, but which modify the oscillations of the great mass of the ocean. However, amidst all these irregularities, the ebb and flow of the sea maintain a ratio to the forces producing them sufficient to indicate their nature, and to verify the law of the attraction of the sun and moon on the sea. La Place observes, that the investigation of such relations between cause and effect is no less useful in natural philosophy than the direct solution of problems, either to prove the existence of the causes, or trace the laws of their effects. Like the theory of probabilities, it is a happy supplement to the ignorance and weakness of the human mind. Thus the problem of the tides does not admit of a general solution; it is certainly necessary to analyse the funeral phenomena which ought to result from the attraction of the sun and moon, but these must be corrected in each particular case by those local observations which are modified by the extent and depth of the sea, and the peculiar circumstances of the port.
Since the disturbing action of the sun and moon can only become sensible in a very great extent of water, it is evident that the Pacific ocean is one of the principal sources of our tides; but in consequence of the rotation of the earth, and the inertia of the ocean, high water does not happen till some time after the moon's southing. The tide raised in that world of waters is transmitted to the Atlantic, and from that sea it moves in a northerly direction along the coasts of Africa and Europe, arriving later and later at each place. This great wave however is modified by the tide raised in the Atlantic, which sometimes combines with that from the Pacific in raising the sea, and sometimes is in opposition to it, so that the tides only rise in proportion to their difference. This great combined wave, reflected by the shores of the Atlantic, extending nearly from pole to pole, still coming northward, occurs through the Irish and British channels into the North sea, so that the tides in our ports are modified by those of another hemisphere. Thus the theory of the tides in each port, both as to their height and the times at which they take place, is really a matter of experiment, and can only be perfectly determined by the mean of a very great number of observations including several revolutions of the moon's nodes.
The height to which the tides rise is much greater in narrow channels than in the open sea, on account of the obstructions they meet with. In high latitudes where the ocean is less directly under the influence of the luminaries, the rise and fall of the sea is inconsiderable, so that, in all probability, there is no tide at the poles, or only a small annual and monthly one. The ebb and flow of the sea are perceptible in rivers to a very great distance from their estuaries. In the straits of Pauxis, in the river of the Amazons, more than five hundred miles from the sea, the tides are evident. It requires so many days for the tide to ascend this mighty stream, that the returning tides meet a succession of those which are coming up; so that every possible variety occurs in some part or other of its shores, both as to magnitude and time. It requires a very wide expanse of water to accumulate the impulse of the sun and moon, so as to render their influence sensible; on that account the tides in the Mediterranean and Black Sea are scarcely perceptible.
These perpetual commotions in the waters of the ocean are occasioned by forces that bear a very small proportion to terrestrial gravitation: the sun's action in raising the ocean is only the 1/38448000 of gravitation at the earth's surface, and the action of the moon is little more than twice as much these forces being in the ratio of 1 to 2.35333. From this ratio the mass of the moon is found to be only 1/15 part of that of the earth. The initial state of the ocean has no influence on the tides; for whatever its primitive conditions may have been, they must soon have vanished by the friction and mobility of the fluid. One of the most remarkable circumstances in the theory of the tides is the assurance that in consequence of the density of the sea being only one-fifth of the mean density of the earth, the stability of the equilibrium of the ocean never can be subverted by any physical cause whatever. A general inundation arising from the mere instability of the ocean is therefore impossible.
The atmosphere when in equilibrio is an ellipsoid flattened at the poles from its rotation with the earth: in that state its strata are of uniform density at equal heights above the level of the sea, and it is sensibly of finite extent, whether it consists of particles infinitely divisible or not. On the latter hypothesis it must really be finite; and even if the particles of matter be infinitely divisible, it is known by experience to be of extreme tenuity at very small heights. The barometer rises in proportion to the superincumbent pressure. Now at the temperature of melting ice, the density of mercury is to that of air as 10320 to 1; and as the mean height of the barometer is 29.528 inches, the height of the atmosphere by simple proportion is 30407 feet, at the mean temperature of 62?, or 34153 feet, which is extremely small, when compared with the radius of the earth. The action of the sun and moon disturbs the equilibrium of the atmosphere, producing oscillations similar to those in the ocean, which occasion periodic variations in the heights of the barometer. These, however, are so extremely small, that their existence in latitudes so far removed from the equator is doubtful; a series of observations within the tropics can alone decide this delicate point. La Place seems to think that the flux and reflux distinguishable at Paris may be occasioned by the rise and fall of the ocean, which forms a variable base to so great a portion of the atmosphere.
The attraction of the sun and moon has no sensible effect on the trade winds; the heat of the sun occasions these aerial currents, by rarefying the air at the equator, which causes the cooler and more dense part of the atmosphere to rush along the surface of the earth to the equator, while that which is heated is carried along the higher strata to the poles, forming two currents in the direction of the meridian. But the rotatory velocity of the air corresponding to its geographical situation decreases towards the poles; in approaching the equator it must therefore revolve more slowly than the corresponding parts of the earth, and the bodies on the surface of the earth must strike against it with the excess of their velocity, and by its reaction they will meet with a resistance contrary to their motion of rotation; so that the wind will appear, to a person supposing himself to be at rest, to blow in a contrary direction to the earth's rotation, or from east to west, which is the direction of the trade winds. The atmosphere scatters the sun's rays, and gives all the beautiful tints and cheerfulness of day. It transmits the blue light in greatest abundance; the higher we ascend, the sky assumes a deeper hue, but in the expanse of space the sun and stars must appear like brilliant specks in profound blackness.
The sun and most of the planets appear to be surrounded with atmospheres of considerable density. The attraction of the earth has probably deprived the moon of hers, for the refraction of the air at the surface of the earth is at least a thousand times as great as at the moon. The lunar atmosphere, therefore, must be of a greater degree of rarity than can be produced by our best air-pumps; consequently no terrestrial animal could exist in it.
Many philosophers of the highest authority concur in the belief that light consists in the undulations of a highly elastic ethereal medium pervading space, which, communicated to the optic nerves produce the phenomena of vision. The experiments of our illustrious countryman, Dr. Thomas Young, and those of the celebrated Fresnel, show that this theory accords better with all the observed phenomena than that of the emission of particles from the luminous body. As sound is propagated by the undulations of the air, its theory is in a great many respects similar to that of light. The grave or low tones are produced by very slow vibrations, which increase in frequency progressively as the note becomes more acute. When the vibrations of a musical chord, for example, are less than sixteen in a second, it will not communicate a continued sound to the ear; the vibrations or pulses increase in number with the acuteness of the note, till at last all sense of pitch is lost. The whole extent of human hearing, from the lowest notes of the organ to the highest known cry of insects, as of the cricket, includes about nine octaves.
The propagation of sound requires a much denser medium than that of either light or heat; its intensity diminishes as the rarity of the air increases; so that, at a very small height above the surface of the earth, the noise of the tempest ceases, and the thunder is heard no more in those boundless regions where the heavenly bodies accomplish their periods in eternal and sublime silence.
What the body of the sun may be, it is impossible to conjecture; but he seems to be surrounded by an ocean of flame through which his dark nucleus appears like black spots, often of enormous size. The solar rays, which probably arise from the chemical processes that continually take place at his surface, are transmitted through space in all directions; but, notwithstanding the sun's magnitude, and the inconceivable heat that must exist where such combustion is going on, as the intensity both of his light and heat diminishes with the square of the distance, his kindly influence can hardly be felt at the boundaries of our system. Much depends on the manner in which the rays fall, as we readily perceive from the different climates on our globe. In winter the earth is nearer the sun by 1/30th than in summer, but the rays strike the northern hemisphere more obliquely in winter than in the other half of the year. In Uranus the sun must be seen like a small but brilliant star, not above the hundred and fiftieth part so bright as he appears to us; that is however 2000 times brighter than our moon to us, so that he really is a sun to Uranus, and probably imparts some degree of warmth. But if we consider that water would not remain fluid in any part of Mars, even at his equator, and that in the temperate zones of the same planet even alcohol and quicksilver would freeze, we may form some idea of the cold that must reign in Uranus, unless indeed the ether has a temperature. The climate of Venus more nearly resembles that of the earth, though, excepting perhaps at her poles, much too hot for animal and vegetable life as they exist here; but in Mercury the mean heat, arising only from the intensity of the sun's rays, must be above that of boiling quick-silver, and water would boil even at his poles. Thus the planets, though kindred with the earth in motion and structure, are totally unfit for the habitation of such a being as man.
The direct light of the sun has been estimated to be equal to that of 5563 wax candles of a moderate size, supposed to be placed at the distance of one foot from the object: that of the moon is probably only equal to the light of one candle at the distance of twelve feet; consequently the light of the sun is more than three hundred thousand times greater than that of the moon; for which reason the light of the moon imparts no heat, even when brought to a focus by a mirror.
In adverting to the peculiarities in the form and nature of the earth and planets, it is impossible to pass in silence the magnetism of the earth, the director of the mariner's compass, and his guide through the ocean. This property probably arises from metallic iron in the interior of the earth, or from the circulation of currents of electricity round it: its influence extends over every part of its surface, but its accumulation and deficiency determine the two poles of this great magnet, which are by no means the same as the poles of the earth's rotation. In consequence of their attraction and repulsion, a needle freely suspended, whether it be magnetic or not, only remains in equilibrio when in the magnetic meridian, that is, in the plane which passes through the north and south magnetic poles. There are places where the magnetic meridian coincides with the terrestrial meridian; in these a magnetic needle freely suspended, points to the true north, but if it be carried successively to different places on the earth's surface, its direction will deviate sometimes to the east and sometimes to the west of north. Lines drawn on the globe through all the places where the needle points due north and south, are called lines of no variation, and are extremely complicated. The direction of the needle is not even constant in the same place, but changes in a few years, according to a law not yet determined. In 1657, the line of no variation passed through London. In the year 1819, Captain Parry, in his voyage to discover the north-west passage round America, sailed directly over the magnetic pole; and in 1824, Captain Lyon, when on en expedition for the same purpose, found that the variation of the compass was 37? 30' west, and that the magnetic pole was then situate in 63? 26' 51" north latitude, and in 80? 51' 25" west longitude. It appears however from later researches that the law of terrestrial magnetism is of considerable complication, and the existence of more than one magnetic pole in either hemisphere has been rendered highly probable. The needle is also subject to diurnal variations; in our latitudes it moves slowly westward from about three in the morning till two, and returns to its former position in the evening.
A needle suspended so as only to be moveable in the vertical plane, dips or become more and more inclined to the horizon the nearer it is brought to the magnetic pole. Captain Lyon found that the dip in the latitude and longitude mentioned was 86? 32'. What properties the planets may have in this respect, it is impossible to know, but it is probable that the moon has become highly magnetic, in consequence of her proximity to the earth, and because her greatest diameter always points towards it.
The passage of comets has never sensibly disturbed the stability of the solar system; their nucleus is rare, and their transit so rapid, that the time has not been long enough to admit of a sufficient accumulation of impetus to produce a perceptible effect. The comet of 1770 passed within 80000 miles of the earth without even affecting our tides, and swept through the midst of Jupiter's satellites without deranging the motions of those little moons. Had the mass of that comet been equal to the mass of the earth, its disturbing action would have shortened the year by the ninth of a day; but, as Delambre's computations from the Greenwich observations of the sun, show that the length of the year has not been sensibly affected by the approach of the comet. La Place proved that its mass could not be so much as the 5000th part of that of the earth. The paths of comets have every possible inclination to the plane of the ecliptic, and unlike the planets, their motion is frequently retrograde. Comets are only visible when near their perihelia. Then their velocity is such that its square is twice as great as that of a body moving in a circle at the same distance; they consequently remain a very short time within the planetary orbits; and as all the conic sections of the same focal distance sensibly coincide through a small arc on each side of the extremity of their axis, it is difficult to ascertain in which of these curves the comets move, from observations made, as they necessarily must be, at their perihelia: but probably they all move in extremely eccentric ellipses, although, in most cases, the parabolic curve coincides most nearly with their observed motions. Even if the orbit be determined with all the accuracy that the case admits of, it may be difficult, or even impossible, to recognise a comet on its return, because its orbit would be very much changed if it passed near any of the large planets of this or of any other system, in consequence of their disturbing energy, which would be very great on bodies of so rare a nature. Halley and Clairaut predicted that, in consequence of the attraction of Jupiter and Saturn, the return of the comet of 1759 would be retarded 618 days, which was verified by the event as nearly as could be expected.
The nebulous appearance of comets is perhaps occasioned by the vapours which the solar heat raises at their surfaces in their passage at the perihelia, and which are again condensed as they recede from the sun. The comet of 1680 when in its perihelion was only at the distance of one-sixth of the sun's diameter, or about 148000 miles from its surface; it consequently would be exposed to a heat 27500 times greater than that received by the earth. As the sun's heat is supposed to be in proportion to the intensity of his height, it is probable that a degree of heat so very intense would be sufficient to convert into vapour every terrestrial substance with which we are acquainted.
In those positions of comets where only half of their enlightened hemisphere ought to be seen, they exhibit no phases even when viewed with high magnifying powers. Some slight indications however were once observed by Hevelius and La Hire in 1682; and in 1811 Sir William Herschel discovered a small luminous point, which he concluded to be the disc of the comet. In general their masses are so minute, that they have no sensible diameters, the nucleus being principally formed of denser strata of the nebulous matter, but so rare that stars have been seen through them. The transit of a comet over the sun's disc would afford the best information on this point. It was computed that such an event was to take place in the year 1627; unfortunately the sun was hid by clouds in this country, but it was observed at Viviers and at Marseilles at the time the comet must have been on it, but no spot was seen. The tails are often of very great length, and are generally situate in the planes of their orbits; they follow them in their descent towards the sun, but precede them in their return, with a small degree of curvature; but their extent and form must vary in appearance, according to the position of their orbits with regard to the ecliptic. The tail of the comet of 1680 appeared, at Paris, to extend over sixty-two degrees. The matter of which the tail is composed must be extremely buoyant to precede a body moving with such velocity; indeed the rapidity of its ascent cannot be accounted for. The nebulous part of comets diminishes every time they return to their perihelia; after frequent returns they ought to lose it altogether, and present the appearance of a fixed nucleus; this ought to happen sooner in comets of short periods. La Place supposes that the comet of 1682 must be approaching rapidly to that state. Should the substances be altogether or even to a great degree evaporated, the comet wilt disappear for ever. Possibly comets may have vanished from our view sooner than they otherwise would have done from this cause. Of about six hundred comets that have been seen at different times, three are now perfectly ascertained to form part of our system; that is to say, they return to the sun at intervals of 76, 6 1/3, and 3 1/4 years nearly.
A hundred and forty comets have appeared within the earth's orbit during the last century that have not again been seen; if a thousand years be allowed as the average period of each, it may be computed by the theory of probabilities, that the whole number that range within the earth's orbit must be 1400; but Uranus being twenty times more distant, there may be no less than 11,200,000 comets that come within the known extent of our system. In such a multitude of wandering bodies it is just possible that one of them may come in collision with the earth; but even if it should, the mischief would be local, and the equilibrium soon restored. It is however more probable that the earth would only be deflected a little from its course by the near approach of the comet, without being touched. Great as the number of comets appears to be, it is absolutely nothing when compared to the number of the fixed stars. About two thousand only are visible to the naked eye, but when we view the heavens with a telescope, their number seems to be limited only by the imperfection of the instrument. In one quarter of an hour Sir William Herschel estimated that 116000 stars passed through the field of his telescope, which subtended an angle of 15'. This however was stated as a specimen of extraordinary crowding; but at an average the whole expanse of the heavens must exhibit about a hundred millions of fixed stars that come within the reach of telescopic vision.
The first catalogue of double stars in which their places and relative positions are determined, was accomplished by the talents and industry of Sir William Herschel, to whom astronomy is indebted for so many brilliant discoveries, and with whom originated the idea of their combination in binary and multiple systems, an idea which his own observations had completely established, but which has since received additional confirmation from those of his son and Sir James South, the former of whom, as well as Professor Struve of Dorpat, have added many thousands to their numbers. The motions of revolution round a common centre of many have been clearly established, and their periods determined with considerable accuracy. Some have already since their first discovery accomplished nearly a whole revolution, and one, if the latest observations can be depended on, is actually considerably advanced in its second period. These interesting systems thus present a species of sidereal chronometer, by which the chronology of the heavens will be marked out to future ages by epochs of their own, liable to no fluctuations from planetary disturbances such as obtain in our system.
Add to tbrJar First Page Next Page