Read Ebook: Scientific American Supplement No. 392 July 7 1883 by Various
Font size:
Background color:
Text color:
Add to tbrJar First Page Next Page
Ebook has 355 lines and 43819 words, and 8 pages
Water Supply of Small Towns.--Process of Softening Hard Water. Six figures.
Improved Water Meter. Several figures.
Preventing Iron from Rusting.
An Elastic Mass for Confectioners' Use.
Caoutchouc.
Photographic Action Studied Spectroscopically.
Salt and Lime.
Renewing Paint without Burning.
Vinegar.
The Preservation of Meat by Carbonic Acid.
On the Theory of the Formation of Compound Ethers.
The Alizarine Industry.
Reduction of Oxidized Iron by Carbonic Oxide.
Moist Air in Living Rooms.
Sponges at the Bahamas.
Testing Fish Ova for Impregnation.
St. Blaise.--The winner of the Derby. 1 illustration.
IMPROVED DYNAMO MACHINE.
The continuous current and the alternating current generators invented by Dr. J. Hopkinson and Dr. Alexander Muirhead are peculiarly interesting as being probably the first in which the bobbins of the armature were wound with copper ribbon and arranged on a disk armature much in the same way as was afterward done by Sir William Thomson and by Mr. Ferranti. In the Muirhead-Hopkinson machine the armature coils are attached to a soft iron ring, whereas in the Ferranti the iron core is dispensed with, and a gain of lightness in the armature or rotating part effected; this advantage is of considerable importance, though Messrs. Hopkinson and Muirhead can of course reduce the weight of this iron core to insignificant proportions.
The general form of this generator is clearly shown by the side and end elevation.
The armature is made by taking a pulley and encircling it with a rim of sheet-iron bands, each insulated from the other by asbestos paper. On one or both sides of the rim thus formed, radial slots are cut to admit radial coils of insulated copper wire or ribbon, so that they lie in planes parallel to the plane of the pulley. In the continuous current machine coils are placed on both sides of the iron rim and arranged alternately, that on the one side always covering the gap between two on the other side. In this way, when a coil on one side of the rim is at its "dead point" and yields its minimum of current, the corresponding coil on the other side is giving out its maximum.
The field magnets are made in a similar manner to the armature and run in circles parallel to the rim of the latter. The cores may be built up of wrought iron as the rim of the armature is; but it is found cheaper to make them of solid wrought or cast iron. To stop the local induced currents in the core, however, Messrs. Muirhead and Hopkinson cut grooves in the faces of the iron cores, and fill them up with sheet-iron strips insulated from each other, similar to the sheet-iron rim of the armature.
The coils, both in the armature and electro-magnets, are packed as closely as they may to each other, and have thus a compressed or quadrilateral shape. The arrangement is shown in Figs. 1 and 2, which represent, in side view and plan, the armature pulley with the soft iron rim and coils attached. There a is the pulley which is keyed to the shaft of the machine, and is encircled with bands of sheet iron, b, insulated from each other by ribbons of asbestos paper laid between every two bands. When the rim has been built up in this way, radial holes are drilled through it from the outer edge inward, and the whole rim is bound together by bolts, d, inserted in the holes and secured by cottars, e. Radial slots are then cut on each side of the rim all round, and the coils of wire mounted on them.
Figs. 3 and 4 show the armature of the continuous current dynamo, with the coils on one side of the rim, half way between the coils on the other side, so as to give a more continuous current. In the alternating current machine the slots on the opposite faces are face to face.
Figs. 5 and 9 illustrate the complete continuous current machine, Fig. 9 showing the internal arrangement of the field magnets, and Fig. 5 the external frame of cast iron supporting them. In these figures a is the armature already described, b b are the cores of the electro-magnets with a strong cast iron backing, c c; d d are the exciting coils or field magnets, so connected that the poles presented to the armature are alternately north and south, thus bringing a south pole on one side of the armature opposite a north pole on the other side.
The commutator, e, is arranged to prevent sparking when the brushes leave a contact piece. This is done by splitting up the brushes into several parts and inserting resistances between the part which leaves the contact piece last and the rest of the circuit. This resistance checks the current ere the final rupture of contact takes place.
Figs. 6 and 7 will explain the structure of the commutator. Here a a a are the segments or contact pieces insulated from each other, and b' b b are the collecting brushes carried on a spindle, c c'. One of these brushes, b', is connected to the spindle, c, through an electrical resistance of plumbago, arranged as shown in Fig. 7, where d e are metal cylinders, d being in contact with the brush, b', while e is in contact with the spindle, c. The space, f, between these two cylinders, d e, is filled with a mixture of plumbago and lampblack of suitable resistance, confined at the ends by ivory disks. The brush, b', is adjusted by bending till it remains in contact with any segment of the commutator for a short time after the other brushes have left contact with that segment, and thus instead of sudden break of circuit and consequent sparking, a resistance is introduced, and contact is not broken until the current has been considerably reduced.
The contact segments are supported at both ends by solid insulating disks; but they are insulated from each other by the air spaces between them, where the brushes rub upon them.
The alternating current dynamo of Drs. Hopkinson and Muirhead differs little in general construction from that we have described; except that the commutator is very much simplified, and the armature bobbins are placed opposite each other on both sides of the rim. Instead of forming the coils into complete bobbins, Dr. Muirhead prefers to wind them in a zigzag form round the grooved iron rim after the manner shown in Fig. 8, which represents a plan and section of the alternating current armature. This arrangement is simpler in construction than the bobbin winding, and is less liable to generate self-induction current in the armature. Sir William Thomson has adopted a similar plan in one of his dynamos. In Fig. 8, a is the pulley fixed to the spindle of the machine, b b is the iron rim, and c c are the zigzag coils of copper ribbon. The field magnets are also wound in a similar manner.
AN IMPROVED MANGANESE BATTERY.
The Leclanche battery is distinguished for its simplicity, its small internal resistance , and that all chemical action ceases when the current is broken, that it is not sensitive to external influence, and by the self-renewal of the negative electrodes. But on the opposite side the action is not very great , and the zinc as well as the sal ammoniac are converted into products that cannot be utilized.
I replace the solution of sal ammoniac by one of caustic potash or soda , and the thin zinc rods by zincs with larger surfaces. In this manner, I obtain a powerful and odorless battery, having all the valuable qualities of the Leclanche, and one that permits of a renewal of the potash solution as well as of the negative electrode.
The electromotive power of this element may be as high as 1.8 D. The same pyrolusite cylinder used with the same thin rod of zinc will precipitate 75 per cent. more copper from solution in an hour when caustic potash is used than when sal ammoniac is employed. But by replacing the thin zinc rod by a zinc cylinder of large surface, 2 1/2 times as much copper is precipitated in the same time.
The more powerful action of such a pair is explained by the stronger excitation and more rapid regeneration that the negative electrodes undergo from the oxidizing action of the air in the potash solution, as well as by the fact that this solution is a better conductor than the sal ammoniac solution. The potash solution does not crystallize easily, hence the negative electrode remains free from crystals and does not require filling up with water. Zinc dissolves only while in contact with negative bodies, hence there is no unnecessary consumption of zinc either in the open or closed circuit.
When the potash lye has become useless, I regenerate it by removing the zinc in the following manner: I pour the solution from the cells, put it in a suitable vessel, where I add water to replace that already evaporated, and then shake it up well at the ordinary temperature with hydrated oxide of zinc . Under this treatment the greater portion of the zinc that had been chemically dissolved by the potash is precipitated in the form of zinc hydrate, along with some carbonate. The liquid is now allowed to settle, and the clear supernatant solution is poured back again into the battery cells. The battery has rather greater electromotive force when this regenerated lye is used, because certain foreign matters from the carbon, like sulphur, chlorine, sulphuric acid, etc., are removed by this treatment.
THE CAUSE OF EVIDENT MAGNETISM IN IRON, STEEL, AND OTHER MAGNETIC METALS.
NEUTRALITY.
The apparatus needed for researches upon evident external polarity requires no very great skill or thought, but simply an apparatus to measure correctly the force of the evident repulsion or attraction; in the case of neutrality, however, the external polarity disappears, and we consequently require special apparatus, together with the utmost care and reflection in its use.
From numerous researches previously made by means of the induction balance, the results of which I have already published, I felt convinced that in investigating the cause of magnetism and neutrality I should have in it the aid of the most powerful instrument of research ever brought to bear upon the molecular construction of iron, as indeed of all metals. It neglects all forces which do not produce a change in the molecular structure, and enables us to penetrate at once to the interior of a magnet or piece of iron, observing only its peculiar structure and the change which takes place during magnetization or apparent neutrality.
The induction balance is affected by three distinct arrangements of molecular structure in iron and steel, by means of which we have apparent external neutrality.
Fig 1 shows several polar directions of the molecules as indicated by the arrows. Poisson assumed as a necessity of his theory, that a molecule is spherical; but Dr. Joule's experimental proof of the elongation of iron by one seven-hundred and-twenty-thousandth of its length when magnetized, proves at least that its form is not spherical; and, as I am unable at present to demonstrate my own views as to its exact form, I have simply indicated its polar direction by arrows--the dotted oval lines merely indicating its limits of free elastic rotation.
In Fig. 1, at A, we have neutrality by the mutual attraction of each pair of molecules, being the shortest path in which they could satisfy their mutual attractions. At B we have the case of superposed magnetism of equal external value, rendering the wire or rod apparently neutral, although a lower series of molecules are rotated in the opposite direction to the upper series, giving to the rod opposite and equal polarities. At C we have the molecules arranged in a circular chain around the axis of a wire or rod through which an electric current has passed. At D we have the evident polarity induced by the earth's directive influence when a soft iron rod is held in the magnetic meridian. At E we have a longitudinal neutrality produced in the same rod when placed magnetic west, the polarity in the latter case being transversal.
In all these cases we have a perfectly symmetrical arrangement, and I have not yet found a single case in well-annealed soft iron in which I could detect a heterogeneous arrangement, as supposed by Ampere, De la Rive, Weber, Wiedermann, and Maxwell.
We can only study neutrality with perfectly soft Swedish iron. Hard iron and steel retain previous magnetizations, and an apparent external neutrality would in most cases be the superposition of one magnetism upon another of equal external force in the opposite direction, as shown at B, Fig. 1. Perfectly soft iron we can easily free, by vibrations, from the slightest trace of previous magnetism, and study the neutrality produced under varying conditions.
If we take a flat bar of soft iron, of 30 or more centimeters in length, and hold it vertically , we find its lower end to be of strong north polarity, and its upper end south. On reversing the rod and repeating the vibrations, we find that its lower end has precisely a similar north polarity. Thus the iron is homogeneous, and its polarity symmetrical. If we now magnetize this rod to produce a strong south pole at its lower portion, we can gradually reverse this polarity, by the influence of earth's magnetism, by slightly tapping the upper extremity with a small wooden mallet. If we observe this rod by means of a direction needle at all parts, and successively during its gradual passage from one polarity to the other, there will be no sudden break into a haphazard arrangement, but a gradual and perfectly symmetrical rotation from one direction to that of the opposite polarity.
If this rod is placed east and west, having first, say, a north polarity to the right, we can gradually discharge or rotate the molecules to zero, and as gradually reverse the polarity by simply inclining the rod so as to be slightly influenced by earth's magnetism; and at no portion of this passage from one polarity to neutrality, and to that of the opposite name, will there be found a break of continuity of rotation or haphazard arrangement. If we rotate this rod slowly, horizontally or vertically, taking observations at each few degrees of rotation of an entire revolution, we find still the same gradual symmetrical change of polarity, and that its symmetry is as complete at neutrality as in evident polarity.
In all these cases there is no complete neutrality, the longitudinal polarity simply becoming transversal when the rod is east and west. F, G, H, I, J, Fig. 1, show this gradual change, H being neutral longitudinally, but polarized transversely. If, in place of the rod, we take a small square soft iron plate and allow its molecules freedom under the sole influence of the earth's magnetism, then we invariably find the polarity in the direction of the magnetic dip, no matter in what position it be held, and a sphere of soft iron could only be polarized in a similar direction Thus we can never obtain complete external neutrality while the molecules have freedom and do not form an internal closed circle of mutual attractions; and whatever theory we may adopt as to the cause of polarity in the molecule, such as Coulomb's, Poisson's, Ampere's, or Weber's, there can exist no haphazard arrangement in perfectly soft iron, as long as it is free from all external causes except the influence of the earth; consequently these theories are wrong in one of their most essential parts.
We can, however, produce a closed circle of mutual attraction in iron and steel, producing complete neutrality as long as the structure is not destroyed by some stronger external directing influence.
Oersted discovered that an external magnetic needle places itself perpendicular to an electric current; and we should expect that, if the molecules of an iron wire possessed inherent polarity and could rotate, a similar effect would take place in the interior of the wire to that observed by Oersted. Wiedermann first remarked this effect, and it has been known as circular magnetism. This circle, however, consists really in each molecule having placed itself perpendicular to the current, simply obeying Oersted's law, and thus forming a complete circle in which the mutual attractions of the molecules forming that circle are satisfied, as shown as C, Fig. 1. This wire becomes completely neutral, any previous symmetrical arrangement of polarity rotating to form its complete circle of attractions; and we can thus form in hard iron and steel a neutrality extremely difficult to break up or destroy. We have evident proof that this neutrality consists of a closed chain, or circle, as by torsion we can partially deflect them on either side; thus from a perfect externally neutral wire, producing either polarity, by simple mechanical angular displacement of the molecules, as by right or left handed torsion.
If we magnetize a wire placed east and west, it will retain this polarity until freed by vibrations, as already remarked. If we pass an electric current through this magnetized wire, we can notice the gradual rotation of the molecules, and the formation of the circular neutrality. If we commence with a weak current, gradually increasing its strength, we can rotate them as slowly as may be desired. There is no sudden break or haphazard moment of neutrality: the movements to perfect zero are accomplished with perfect symmetry throughout.
We can produce a more perfect and shorter circle of attractions by the superposition of magnetism, as at B, Fig. 1. If we magnetize a piece of steel or iron in a given direction with a strong magnetic directing power, the magnetism penetrates to a certain depth. If we slightly diminish the magnetizing power, and magnetize the rod in a contrary direction, we may reduce it to zero, by the superposition of an exterior magnetism upon one of a contrary name existing at a greater depth; and if we continue this operation, gradually diminishing the force at each reversal, we can easily superpose ten or more distinct symmetrical arrangements, and, as their mutual attractions are satisfied in a shorter circle than in that produced by electricity, it is extremely difficult to destroy this formation when once produced.
Add to tbrJar First Page Next Page