bell notificationshomepageloginedit profileclubsdmBox

Read Ebook: Scientific American Supplement No. 392 July 7 1883 by Various

More about this book

Font size:

Background color:

Text color:

Add to tbrJar First Page Next Page Prev Page

Ebook has 355 lines and 43819 words, and 8 pages

We can produce a more perfect and shorter circle of attractions by the superposition of magnetism, as at B, Fig. 1. If we magnetize a piece of steel or iron in a given direction with a strong magnetic directing power, the magnetism penetrates to a certain depth. If we slightly diminish the magnetizing power, and magnetize the rod in a contrary direction, we may reduce it to zero, by the superposition of an exterior magnetism upon one of a contrary name existing at a greater depth; and if we continue this operation, gradually diminishing the force at each reversal, we can easily superpose ten or more distinct symmetrical arrangements, and, as their mutual attractions are satisfied in a shorter circle than in that produced by electricity, it is extremely difficult to destroy this formation when once produced.

The induction balance affords also some reasons for believing that the molecules not only form a closed circle of attractions, as at B, but that they can mutually react upon each other, so as to close a circle of attractions as a double molecule, as shown at A. The experimental evidence, however, is not sufficient to dwell on this point, as the neutrality obtained by superposition is somewhat similar in its external effects.

We can produce a perfectly symmetrical closed circle of attractions of the nature of the neutrality of C, Fig. 3, by forming a steel wire into a closed circle, 10 centimeters in diameter, if this wire is well joined at its extremities by twisting and soldering. We can then magnetize this ring by slowly revolving it at the extremity of one pole of a strong permanent magnet; and, to avoid consequent poles at the part last touching the magnet, we should have a graduating wedge of wood, so that while revolving it may be gradually removed to greater distance. This wire will then contain no consequent points or external magnetism: it will be found perfectly neutral in all parts of its closed circle. Its neutrality is similar to C, Fig. 3; for if we cut this wire at any point we find extremely strong magnetic polarity, being magnetized by this method to saturation, and having retained its circle of attractions complete.

I have already shown that soft iron, when its molecules are allowed perfect freedom by vibration, invariably takes the polarity of the external directing influence, such as that of the earth, and it does so even with greater freedom under the influence of heat. Manufacturers of electro-magnets for telegraphic instruments are very careful to choose the softest iron and thoroughly anneal it; but very few recognize the importance as regards the position of the iron while annealing it under the earth's directing influence. The fact, however, has long since been observed.

Dr. Hooke, 1684, remarked that steel or iron was magnetized when heated to redness and placed in the magnetic meridian. I have slightly varied this experiment by heating to redness three similar steel bars, two of which had been previously magnetized to saturation, and placed separately with contrary polarity as regards each other, the third being neutral. Upon cooling, these three bars were found to have identical and similar polarity. Thus the molecules of this most rigid material, cast steel, had become free at red heat, and rotated under the earth's magnetic influence, giving exactly the same force on each; consequently the previous magnetization of two of these bars had neither augmented nor weakened the inherent polarity of their molecules. Soft iron gave under these conditions by far the greatest force, its inherent polarity being greater than that of steel.

I have made numerous other experiments bearing upon the question of neutrality, but they all confirm those I have cited, which I consider afford ample evidence of the symmetrical arrangement of neutrality.

SUPERPOSED MAGNETISM.

Knowing that by torsion we can rotate or diminish magnetism, I was anxious to obtain by its means a complete rotation from north polarity to neutrality, and from neutrality to south polarity, or to completely reverse magnetic polarity by a slight right or left torsion.

I have succeeded in doing this, and in obtaining strong reversal of polarities, by superposing one polarity given while the rod is under a right elastic torsion, with another of the opposite polarity given under a left elastic torsion, the neutral point then being reached when the rod is free from torsion. The rod should be very strongly magnetized under its first or right-hand torsion, so that its interior molecules are rotated, or, in other words, magnetized to saturation; the second magnetization in the contrary sense and torsion should be feebler, so as only to magnetize the surface, or not more than one-half its depth; these can be easily adjusted to each other so as to form a complete polar balance of force, producing, when the rod is free from torsion, the neutrality as shown at B, Fig. 1.

The apparatus needed is simply a good compound horseshoe permanent magnet, 15 centimeters long, having six or more plates, giving it a total thickness of at least 3 centimeters. We need a sufficiently powerful magnet, as I find that I obtain a more equal distribution of magnetism upon a rod or strip of iron by drawing it lengthwise over a single pole in a direction from that pole, as shown in Fig. 2; we can then obtain saturation by repeated drawings, keeping the same molecular symmetry in each experiment.

In order to apply a slight elastic torsion when magnetizing rods or wires, I have found it convenient to attach two brass clamp keys to the extremities of the rods, or simply turn the ends at right angles, as shown in the following diagram, by which means we can apply an elastic twist or torsion while drawing the rod over the pole of the permanent magnet. We can thus superpose several and opposite symmetrical structures, producing a polar north or south as desired, greatly in excess of that possible under a single or even double magnetization, and by carefully adjusting the proportion of opposing magnetisms, so that both polarities have the same external force, the rod will be at perfect external neutrality when free from torsion.

If we now hold one end of this rod at a few centimeters distance from a magnetic directive needle, we find it perfectly neutral when free of torsion, but the slightest torsion right or left at once produces violent repulsion or attraction, according to the direction of the torsion given to the rod, the iron rod or strips of hoop-iron which I use for this experiment being able, when at the distance of five centimeters from the needle, to turn it instantly 90? on either side of its zero.

The external neutrality that we can now produce at will is absolute, as it crosses the line of two contrary polarities, being similar to the zero of my electric sonometer, whose zero is obtained by the crossing of two opposing electric forces.

This rod of iron retains its peculiar powers of reversal in a remarkable degree, a condition quite different to that of ordinary magnetization, for the same rod, when magnetized to saturation under a single ordinary magnetism, loses its evident magnetism by a few elastic torsions, as I have already shown; but when it is magnetized under the double torsion with its superposed magnetism, it is but slightly reduced by variations or numerous torsions, and I have found it impossible to render this rod again free from its double polar effects, except by strongly remagnetizing it to saturation with a single polarity. The superposed magnetism then becomes a single directive force, and we can then by a few vibrations or torsions reduce the rod to its ordinary condition.

The effects of superposed magnetism and its double polarity I have produced in a variety of ways, such as by the electro-magnetic influence of coils, or in very soft iron simply by the directive influence of the earth's magnetism, reversing the rod and torsions when held in the magnetic meridian, these rods when placed magnetic west showing distinctly the double polar effects.

It is remarkable, also, that we are enabled to superpose and obtain the maximum effects on thin strips of iron from 1/4 to 1/2 millimeter in thickness, while in thicker rods we have far less effect, being masked by the comparatively neutral state of the interior, the exterior molecules then reaching upon those of the interior, allowing them to complete in the interior their circle of attractions.

I was anxious to obtain wires which would preserve this structure against the destructive influence of torsion and vibrations, so that I could constantly employ the same wires without the comparatively long and tedious process of preparation. Soft iron soon loses the structure, or becomes enfeebled, under the constant to and fro torsions requisite where we desire a constant change of polarity, as described later in the magnetic bells. Hard steel preserves its structure, but its molecular rigidity is so great that we obtain but mere traces of any change of polarity by torsion. I have found, however, that fine cast drill steel, untempered, of the kind employed by watchmakers, is most suitable; these are generally sold in straight lengths of 30 centimeters. Wires 1 millimeter in diameter should be used, and when it is desired to increase the force, several of these wires, say, nine or ten, should be formed into a single rod or bunch.

The wire as sold is too rigid to give its maximum of molecular rotation effect. We must therefore give it two entire turns or twists to the right, and strongly magnetize it on the north pole of the magnet while under torsion. We must again repeat this operation in the contrary direction, after restoring the wire to its previous position, giving now two entire turns to the left and magnetizing it on the south pole. On restoring the wire to its original place, it will be extremely flexible, and we may now superpose several contrary polarities under contrary torsions, as already described.

The power of these wires, if properly prepared, is most remarkable, being able to reverse their polarity under torsion, as if they were completely saturated; and they preserve this power indefinitely if not touched by a magnet. It would be extremely difficult to explain the action of the rotative effects obtained in these wires under any other theory than that which I have advanced; and the absolute external neutrality that we obtain in them when the polarities are changing, we know, from their structure, to be perfectly symmetrical.

I was anxious to show, upon the reading of this paper, some mechanical movement produced by molecular rotation, consequently I have arranged two bells that are struck alternately by a polarized armature put in motion by the double polarized rod I have already described, but whose position, at three centimeters distant from the axis of the armature, remains invariably the same. The magnetic armature consists of a horizontal light steel bar suspended by its central axle; the bells are thin wine glasses, giving a clear musical tone loud enough, by the force with which they are struck, to be clearly heard at some distance. The armature does not strike these alternately by a pendulous movement, as we may easily strike only one continuously, the friction and inertia of the armature causing its movements to be perfectly dead beat when not driven by some external force, and it is kept in its zero position by a strong directive magnet placed beneath its axle.

The mechanical power obtained is extremely evident, and is sufficient to put the sluggish armature in rapid motion, striking the bells six times per second, and with a power sufficient to produce tones loud enough to be clearly heard in all parts of the hall of the Society. As this is the first direct transformation of molecular motion into mechanical movement, I am happy to show it on this occasion.

There is nothing remarkable in the bells themselves, as they evidently could be rung if the armature was surrounded by a coil, and worked by an electric current from a few cells. The marvel, however, is in the small steel superposed magnetic wire producing by slight elastic torsions from a single wire, one millimeter in diameter, sufficient force from mere molecular rotation to entirely replace the coil and electric current.

ELASTIC NATURE OF THE ETHER SURROUNDING THE MAGNETIC MOLECULES.

During these researches I have remarked a peculiar property of magnetism, viz., that not only can the molecules be rotated through any degree of arc to its maximum, or saturation, but that, while it requires a comparatively strong force to overcome its rigidity or resistance to rotation, it has a small field of its own through which it can move with excessive freedom, trembling, vibrating, or rotating through a small degree with infinitely less force than would be required to rotate it permanently on either side. This property is so marked and general that we can observe it without any special iron or apparatus.

Let us take a flat rod of ordinary hoop iron, 30 or more centimeters in length. If, while holding this vertically, we give freedom to its molecules by torsions, vibrations, or, better still, by a few blows with a wooden mallet upon its upper extremity, we find, as is well known, that its lower portion is strongly north, and its upper south. If we reverse this rod, we now find it neutral at both extremities. We might here suppose that the earth's directing force had rotated the molecules to zero, or transversely, which in reality it has done, but only to the limit of their comparatively free motion; for if we reverse the rod to its original position, its previous strong polarity reappears at both extremities, thus the central point of its free motion is inclined to the rod, giving by its free motion great symmetrical inclination and polarity in one direction, but when reversed the inclination is reduced to zero.

In Fig. 3, D shows the bar of iron when strongly polarized by earth's magnetic influence, under vibrations, with a sufficient force to have rotated its elastic center of action. C shows the same bar with its molecules at zero, or transversal, the directing force of earth being insufficient without the aid of mechanical vibration to allow them to change. The dotted lines of D suppose the molecule to be in the center of its free motion, while at C the molecules have rotated to zero, as they are prevented from further rotation by being at the extreme end of its free motion.

If, now, we hold the rod vertically, as at C, giving neutrality, and give a few slight blows with a wooden mallet to its upper extremity, we can give just the amount of freedom required for it to produce evident polarity, and we then have equal polarity, no matter which end of the bar is below, the center of its free rotation here being perfect, and the rod perfectly neutral longitudinally when held east and west. If, on the other hand, we have given too much freedom by repeated blows of the mallet, its center of free motion becomes inclined with the molecules, and we arrive at its first condition, except that it is now neutral at D and polarized at C. From this it will be seen that we can adjust this center of action, by vibrations or blows, to any point within the external directing influence.

We can perceive this effect of free rotation in a limited space in all classes of iron and steel, being far greater in soft Swedish iron than in hard iron or steel. A similar phenomenon takes place if we magnetize a rod held vertically in the direction of earth's magnetism. It then gives greater polarity than if magnetized east or west, and if magnetized in a contrary sense to earth's magnetism, it is very feebly magnetized, or, if the rod is perfectly soft, it becomes neutral after strong magnetization. This property of comparative freedom, and the rotation of its center of action, can be demonstrated in a variety of ways. One remarkable example of it consists in the telephone. All those who are thoroughly acquainted with electro-magnetism, and know that it requires measurable time to charge an electro-magnet to saturation , were surprised that the telephone could follow the slightest change of timbre, requiring almost innumerable changes of force per second. I believe the free rotation I have spoken of through a limited range explains its remarkable sensitiveness and rapidity of action, and, according to this view, it would also explain why loud sounding telephones can never repeat all the delicacy of timbre that is easily done with those only requiring a force comprised in the critical limits of its free rotation. This property, I have found, has a distinct critical value for each class of iron, and I propose soon to publish researches upon the molecular construction of steel and iron, in which I have made use of this very property as a guide to the quality of the iron itself.

The discovery of this comparatively free rotation of molecules, by means of which, as I have shown, we can change the axes of their free motion in any direction desired, has led me into a series of researches which have only indirectly any relation with the theory of magnetism. I was extremely desirous, however, of finding an experimental evidence which in itself should demonstrate all portions of the theory, and the following experiment, I believe, answers this purpose.

Let us take a square soft iron rod, five millimeters in diameter by thirty or more centimeters in length, and force the molecules, by aid of blows from a wooden mallet, as previously described, to have their centers of free motion in one direction; the rod will have polarity at both ends, when held vertically; but if reversed, both ends become completely neutral.

If now we turn the rod to its first position, in which it shows strong polarity, and magnetize it while held vertically, by drawing the north pole of a sufficiently powerful permanent magnet from its upper to its lower extremity, we find that this rod, instead of having south polarity at its lower portion, as we should expect from the direction of the magnetization, is completely neutral at both extremities, but if we reverse the rod its fullest free powers of magnetization now appear in the position where it was previously neutral. Thus, by magnetization, we have completely rotated its free path of action, and find that we can rotate this path as desired in any direction by the application of a sufficient directing power.

The limits of this paper do not allow me to speak of the numerous theoretical evidences as shown by the use of my induction balance. I believe, however, that I have cited already experimental evidences to show that what has been attributed to coercive force is really due to molecular freedom or rigidity; that in inherent molecular polarity we have a fact admitted by Coulomb, Poisson, Ampere, De la Rive, Weber, Du Moncel, Wiedermann, and Maxwell; and that we have also experimental evidence of molecular rotation and of the symmetrical character of polarity and neutrality.

The experiments which I have brought forward in this paper, in addition to those mentioned in my paper read before the Royal Society, will, I hope, justify me in having advanced a theory of magnetism which I believe in every portion allows at least experimental evidences of its probable truth.

THE WESTINGHOUSE BRAKE.

Below we illustrate the main parts of the Westinghouse brake as applied to a vehicle. The supplementary reservoir brake cylinder and triple valve are shown in position, and as fitted upon the engine, tender, and each vehicle of the train. Air compressed by a pump on the locomotive to, say, 70 lb. or 80 lb. to the square inch fills the main reservoir on the engine, and flowing through the driver's brake valve and main pipe, also charges the supplementary reservoirs throughout the train. When a train is running, uniform air pressure exists throughout its length--that is to say, the main reservoir on the engine, the pipe from end to end of train, the triple valves and supplementary reservoirs on each vehicle, are all charged ready for work, the brake cylinders being empty and the brakes off. The essential principle of the system is, that maintaining the pressure keeps the brakes off, but letting the air escape from the brake pipe, purposely or accidentally, instantly applies them. It follows, therefore, that the brake may be applied by the driver or any of the guards, or if necessary by a passenger, by the separation of a coupling, or the failure or injury to a vital part of the apparatus, whether due to an accident to the train or to the brake; and as the brake on each vehicle is complete in itself and independent, should the apparatus on any one carriage be torn off, the brake will nevertheless remain applied for almost any length of time upon the rest of the train.

The triple valve, as will be seen, is simply a small piston, carrying with it a slide valve, which can be moved up or down by increasing or decreasing the pressure in the brake pipe. As soon as the air from the main reservoir is turned into the brake pipe, by means of the driver's valve, the piston is pushed up into the position shown, and air is allowed to feed past it through a small groove into the reservoir. At the same time the slide valve covers the port to the brake cylinder, and is in such a position that the air from the latter may exhaust into the atmosphere. The piston has now the same air pressure on both sides; but if the pressure in the brake pipe is decreased, the piston and slide valve are forced down, thereby uncovering the passage through which air from the reservoir flows into the brake cylinder between the pistons, thus applying the brakes. The brake pipe is shut off as soon as the triple valve piston passes the groove. To release the brakes, the piston and slide valves are again moved into the position shown, by the driver turning air from the main reservoir into the brake pipe. The air in the brake cylinder escapes, and at the same time the reservoir is recharged.

Fig. 2 represents two Westinghouse couplings connected. They are exactly alike in all respects, and an air tight joint is made between them by means of the rubber washers. These couplings are so constructed that the air pressure within serves to tighten the joint, and they may be pushed apart by the separation of the train without any injury. Such an occurrence as already explained leads to the instant application of all the brakes on the train.

HYDRAULIC ELEVATORS AND MOTORS.

What I have to say in relation to elevators and motors will be mostly in regard to questions that their uses necessarily bring up for settlement at the water-works office; also to show how I have been able in a measure to overcome some of the many difficulties that have presented themselves, as well as to discuss and seek information as to the best way of meeting others that still have to be dealt with. At the outset, therefore, let me state that I am not an hydraulic engineer, nor have I sufficient mechanical knowledge to undertake the discussion of the construction or relative merits of either elevators or motors. This I would respectfully suggest as a very proper and interesting topic for a paper at some future meeting by some one of the many, eminent engineers of this association.

The water-works of Kansas City is comparatively young, and my experience only dates back six or seven years, or shortly after its completion. At this time it was deemed advisable on account of the probable large revenue to be derived from their use, to encourage the putting in of hydraulic elevators by low water rates. With this end in view a number of contracts were made for their supply at low special rates for a period of years, and our minimum meter rate was charged in all other cases, regardless of the quantity of water consumed. In most instances these special rates have since been found much too low, parties paying in this way being exceedingly extravagant in the use of elevators. However, the object sought was obtained, and now they are very extensively used. In fact, so much has their use increased, that the question is no longer how to encourage their more general adoption, but how to properly govern those that must be supplied. A present our works furnish power to about 15 passenger and 80 freight elevators, and the number is rapidly increasing.

Before going into details it seems proper to give at least a brief description of our water-works, as my observations are to a great extent local.

As before intimated, there are many questions involved in the use of hydraulic elevators, that particularly concern towns supplied by direct pumping, and perhaps other places where the supply by gravity is somewhat limited. In a few larger cities supplied by ample reservoirs and mains, some of the difficulties suggested are not serious. Very little power is necessary to perform the actual work of lifting, with either steam or hydraulic elevators, but on account of the peculiar application of the power, and the great amount of friction to be overcome, a very considerable power has to be provided. It has been estimated, by good authorities, that not more than one-quarter of the power expended in most cases is really utilized.

With all hydraulic elevators of which I have cognizance, as much water is required to raise the empty cars as though they were loaded to maximum capacity. Still, to be available for passenger purposes elevators must have capacity of upward of 2,500 pounds, particularly in hotels, where the cars are often arranged with separate compartments underneath for baggage. In general use it is exceptional that passenger elevators are fully loaded; on the contrary less than half a load is ordinarily carried, and for this reason it would appear that no actual benefit is derived from at least one-half of the water consumed. In this connection it has occurred to me that passenger elevators could be built at no great additional cost, with two cylinders, small and large, the two piston rods of which could be connected so as to both operate the same cable, either or both furnishing power, the smaller cylinder to be used for light loads, the larger for heavy work, and the two together for full capacity, this independent valve arrangement to be controlled by a separate cable running through the car. Whether this plan is practicable or not must be left to elevator manufacturers, but it seems to me that with the Hale-Otis elevator for instance it could easily be accomplished. Certainly some such arrangement would effect a great saving of water, and perhaps bring water bills to a point that this class of consumers could afford to pay.

Hydraulic elevators where the water is used over and over again, by being pumped from the discharge to elevated tanks, cut little or no figure in connection with a city's water supply. When fuel, first cost, attendance of an engineer, and the poor economy of the class of pumps usually employed to perform this work are considered, the cost of operating such elevators is greatly in excess of what it would be if power were supplied direct from water mains, at any reasonable rate. The following remarks will then relate almost exclusively to that class of hydraulic elevators supplied with power directly from the water mains.

Let us now consider whether they are a desirable source of revenue, and in this my knowledge does not exceed my actual experience. Few elevator users appreciate the great quantity of water their elevators consume. Even in Kansas City, where, on account of the high pressure carried, much smaller cylinders than ordinarily are required, it is found that passenger elevators frequently consume 500,000 to 800,000 gallons of water per month, which will make a very considerable bill, at the most liberal rates. I have, therefore, concluded that the quantity of water was so large that, unless liberal concessions were made, it would be a hardship to consumers to pay their water bills, and have therefore made a special schedule, according to quantity, for elevators and motors, these rates standing below our regular meter rates, and running to the lowest point at which we think we can afford to furnish the water. This schedule brings the rate below what we would receive for almost any other legitimate use of water; and, in view of our rapidly increasing consumption, and the probability of soon having to increase all our facilities, it is an open question whether this will continue a desirable source of revenue.

In Kansas City we have elevators of various manufacture: the Hale-Otis, Ready, Smith & Beggs, O'Keefe, Kennedy, and perhaps others, each having its peculiarities, but alike demanding large openings in the mains for supply. These large openings are objectionable features with any waterworks, and especially so with direct pumping. An occurrence from this cause, about two years ago, is an experience I should not like repeated, but is one that might occur whenever the pressure in the mains is depended upon to throw fire streams. In this instance a large block of buildings occupied by jobbing houses and having three elevators was burned down, and the elevator connections broken early in the fire, allowing the water to pour into the cellars in the volume of about twelve ordinary fire streams. This immense quantity of water had to be supplied from a 6-inch main, fed from only one end, which left little pressure available for fighting the fire, and as a matter of course failure to subdue the fire promptly was attributed to the water-works. We have since had up hill work to restore confidence as to our ability to throw fire streams, although we have demonstrated the fact hundreds of times since.

From this time we have been gradually cutting down on the size of openings for elevator supply, but under protest of the elevator agents, who have always claimed that they should be allowed at least a 4-inch opening in the mains, until we have found that under 80 to 90 pounds pressure two to four 1-inch taps will answer the purpose, provided the water pipes are of ample size.

The "water hammer" produced by the quick acting valves of elevators has always been objectionable, both in its effect at the pumping-house and upon water mains and connections. To obviate this, Engineer G. W. Pearson has suggested the use of very large air chambers on the elevator supply, and still smaller openings in the mains, his theory being that the air chambers would not only materially decrease the concussion or "water hammer," but that they would also act as accumulators of power to be drawn from at each trip of the elevator, and replaced when it was at rest. This plan I have never seen put to actual test, but believe it to be entirely practicable, and that we will have to ultimately adopt it.

Another evil in connection with the use of elevators, and which no doubt is common, is the habit many parties have of keeping a key or wrench to turn on and off the water at the curb. This we have sought to remedy by embracing in our plumbers' rules the following: "All elevator connections in addition to the curb stop for the use of the Water Company must be provided with another valve where the pipe first enters the building for the use of occupants of the building." Without this extra valve it was found almost impossible to keep parties from using the curb valve. In most cases the persons were perfectly responsible, and as there was no intent to defraud the company by the act, they would claim this privilege as a precaution against the pipes bursting or freezing. This practice was very generally carried on, and was the direct cause in at least two cases of very serious damage. In the instances referred to, the pipes burst between the elevator and the area wall of buildings, and the valves outside had become so worn from frequent use that they would not operate, allowing the water to literally deluge the basements before the water main could be turned off.

One of the greatest causes of waste from elevators is the wearing out of the piston packing, this being particularly troublesome in most of the Western cities, where the water supplied is to a large extent from turbid streams, carrying more or less fine sand or "grit," which cuts out the packing of the pistons very rapidly. The only practicable remedy for this is close inspection, to see that the pistons do not allow water to pass, a fact that can readily be determined from the noise made in the cylinder when the elevator is in motion going upward.

I have reserved one of the most annoying features of elevator supply for the last, hoping to work myself into a mood to do the subject justice, but doubt if it can be done in language proper to use before this dignified body. I remember on one occasion the mayor of our city, in discussing a job of plumbing, said that it seemed to him "that even a plumber ought to know something about plumbing." Now it would seem that even elevator agents ought to know something about elevators, but from the following incident, which is but one of many, I am led to believe that they are not infallible to say the least. Only a short time since, one of these very reliable agents reported at our office that he had just attached a new indicator to the elevator of a leading hotel. He was asked: "What does it register?" and promptly replied, "Cubic feet." In this case our inspector had already made an examination, and had correctly reported as follows: "Hale elevator; indicator started at zero February 28; internal diameter of cylinder, 12 inches; travel of piston for complete trip 30 1/4 feet; indicator registers for complete trip, 4."

Add to tbrJar First Page Next Page Prev Page

 

Back to top