bell notificationshomepageloginedit profileclubsdmBox

Read Ebook: Boy of My Heart by Leighton Marie Connor

More about this book

Font size:

Background color:

Text color:

Add to tbrJar First Page Next Page Prev Page

Ebook has 599 lines and 47749 words, and 12 pages

Hieronymus Cardan, a wonderful mathematical genius, a most eccentric philosopher, and a distinguished physician, about the middle of the sixteenth century called attention, in his writings, to the power of steam, and to the facility with which a vacuum can be obtained by its condensation. This Cardan was the author of "Cardan's Formula," or rule for the solution of cubic equations, and was the inventor of the "smoke-jack." He has been called a "philosopher, juggler, and madman." He was certainly a learned mathematician, a skillful physician, and a good mechanic.

Many traces are found, in the history of the sixteenth century, of the existence of some knowledge of the properties of steam, and some anticipation of the advantages to follow its application. Matthesius, A. D. 1571, in one of his sermons describes a contrivance which may be termed a steam-engine, and enlarges on the "tremendous results which may follow the volcanic action of a small quantity of confined vapor;" and another writer applied the steam aeolipile of Hero to turn the spit, and thus rivaled and excelled Cardan, who was introducing his "smoke-jack."

"Berg-Postilla, oder Sarepta von Bergwerk und Metallen." Nuremberg, 1571.

As Stuart says, the inventor enumerated its excellent qualities with great minuteness. He claimed that it would "eat nothing, and giving, withal, an assurance to those partaking of the feast, whose suspicious natures nurse queasy appetites, that the haunch has not been pawed by the turnspit in the absence of the housewife's eye, for the pleasure of licking his unclean fingers."

"History of the Steam-Engine," 1825.

Jacob Besson, a Professor of Mathematics and Natural Philosophy at Orleans, and who was in his time distinguished as a mechanician, and for his ingenuity in contriving illustrative models for use in his lecture-room, left evidence, which Beroaldus collected and published in 1578, that he had found the spirit of his time sufficiently enlightened to encourage him to pay great attention to applied mechanics and to mechanism. There was at this time a marked awakening of the more intelligent men of the age to the value of practical mechanics. A scientific tract, published at Orleans in 1569, and probably written by Besson, describes very intelligently the generation of steam by the communication of heat to water, and its peculiar properties.

"Theatrum Instrumentorum et Machinarum, Jacobi Bessoni, cum Franc Beroaldus, figuarum declaratione demonstrativa." Lugduni, 1578.

The French were now becoming more interested in mechanics and the allied sciences, and philosophers and literati, of native birth and imported by the court from other countries, were learning more of the nature and importance of such studies as have a bearing upon the work of the engineer and of the mechanic.

"Le diverse et artificiose machine del Capitano Agostino Ramelli, del Ponte della Prefia." Paris, 1588.

The books of Besson and of Ramelli are the first treatises of importance on general machinery, and were, for many years, at once the sources from which later writers drew the principal portion of their information in relation to machinery, and wholesome stimulants to the study of mechanism. These works contain descriptions of many machines subsequently reinvented and claimed as new by other mechanics.

Leonardo da Vinci, well known as a mathematician, engineer, poet, and painter, of the sixteenth century, describes, it is said, a steam-gun, which he calls the "Architonnerre," and ascribes to Archimedes. It was a machine composed of copper, and seems to have had considerable power. It threw a ball weighing a talent. The steam was generated by permitting water in a closed vessel to fall on surfaces heated by a charcoal fire, and by its sudden expansion to eject the ball.

It is impossible to say to how much credit the story is entitled, but, if true, it was the first attempt, so far as is now known, to make steam useful in developing power for practical purposes. Nothing is known of the form of the engine employed, it only having been stated that a "vessel of boiling water" formed a part of the apparatus.

The account is, however, in other respects so circumstantial, that it has been credited by many; but it is regarded as apocryphal by the majority of writers upon the subject. It was published in 1826 by M. de Navarrete, in Zach's "Astronomical Correspondence," in the form of a letter from Thomas Gonzales, Director of the Royal Archives at Simancas, Spain.

In 1601, Giovanni Battista della Porta, in a work called "Spiritali," described an apparatus by which the pressure of steam might be made to raise a column of water. It included the application of the condensation of steam to the production of a vacuum into which the water would flow.

Porta is described as a mathematician, chemist, and physicist, a gentleman of fortune, and an enthusiastic student of science. His home in Naples was a rendezvous for students, artists, and men of science distinguished in every branch. He invented the magic lantern and the camera obscura, and described it in his commentary on the "Pneumatica." In his work, he described this machine for raising water, as shown in Fig. 4, which differs from one shown by Hero in the use of steam pressure, instead of the pressure of heated air, for expelling the liquid.

"Pneumaticorum libri tres," etc., 4to. Naples, 1601. "I Tre Libri de' Spiritali." Napoli, 1606.

The retort, or boiler, is fitted to a tank from which the bent pipe leads into the external air. A fire being kindled under the retort, the steam generated rises to the upper part of the tank, and its pressure on the surface of the water drives it out through the pipe, and it is then led to any desired height. This was called by Porta an improved "Hero's Fountain," and was named his "Steam Fountain." He described with perfect accuracy the action of condensation in producing a vacuum, and sketched an apparatus in which the vacuum thus secured was filled by water forced in by the pressure of the external atmosphere. His contrivances were not apparently ever applied to any practically useful purpose. We have not yet passed out of the age of speculation, and are just approaching the period of application. Porta is, nevertheless, entitled to credit as having proposed an essential change in this succession, which begins with Hero, and which did not end with Watt.

The use of steam in Hero's fountain was as necessary a step as, although less striking than, any of the subsequent modifications of the machine. In Porta's contrivance, too, we should note particularly the separation of the boiler from the "forcing vessel"--a plan often claimed as original with later inventors, and as constituting a fair ground for special distinction.

The rude engraving above is copied from the book of Porta, and shows plainly the boiler mounted above a furnace, from the door of which the flame is seen issuing, and above is the tank containing water. The opening in the top is closed by the plug, as shown, and the steam issuing from the boiler into the tank near the top, the water is driven out through the pipe at the left, leading up from the bottom of the tank.

The machine of De Caus, like that of Porta, thus consisted of a metal vessel partly filled with water, and in which a pipe was fitted, leading nearly to the bottom, and open at the top. Fire being applied, the steam formed by its elastic force drove the water out through the vertical pipe, raising it to a height limited only by either the desire of the builder or the strength of the vessel.

In 1629, Giovanni Branca, of the Italian town of Loretto, described, in a work published at Rome, a number of ingenious mechanical contrivances, among which was a steam-engine , in which the steam, issuing from a boiler, impinged upon the vanes of a horizontal wheel. This it was proposed to apply to many useful purposes.

At this time experiments were in progress in England which soon resulted in the useful application of steam-power to raising water.

Rymer's "Fdera," Sanderson. Ewbank's "Hydraulics," p. 419.

The second claim is distinct as an application of steam, the language being that which was then, and for a century and a half subsequently, always employed in speaking of its use. The steam-engine, in all its forms, was at that time known as the "fire-engine." It would seem not at all improbable that the third, fifth, and seventh claims are also applications of steam-power.

Thomas Grant, in 1632, and Edward Ford, in 1640, also patented schemes, which have not been described in detail, for moving ships against wind and tide by some new and great force.

Dr. John Wilkins, Bishop of Chester, an eccentric but learned and acute scholar, described, in 1648, Cardan's smoke-jack, the earlier aeolipiles, and the power of the confined steam, and suggested, in a humorous discourse, what he thought to be perfectly feasible--the construction of a flying-machine. He says: "Might not a 'high pressure' be applied with advantage to move wings as large as those of the 'ruck's' or the 'chariot'? The engineer might probably find a corner that would do for a coal-station near some of the 'castles'" . The reverend wit proposed the application of the smoke-jack to the chiming of bells, the reeling of yarn, and to rocking the cradle.

Bishop Wilkins writes, in 1648 , of aeolipiles as familiar and useful pieces of apparatus, and describes them as consisting "of some such material as may endure the fire, having a small hole at which they are filled with water, and out of which the air doth issue forth with a strong and lasting violence." "They are," the bishop adds, "frequently used for the exciting and contracting of heat in the melting of glasses or metals. They may also be contrived to be serviceable for sundry other pleasant uses, as for the moving of sails in a chimney-corner, the motion of which sails may be applied to the turning of a spit, or the like."

Kircher gives an engraving showing the last-named application of the aeolipile; and Erckern gives a picture illustrating their application to the production of a blast in smelting ores. They seem to have been frequently used, and in all parts of Europe, during the seventeenth century, for blowing fires in houses, as well as in the practical work of the various trades, and for improving the draft of chimneys. The latter application is revived very frequently by the modern inventor.

We next meet with the first instance in which the expansive force of steam is supposed to have actually been applied to do important and useful work.

In 1663, Edward Somerset, second Marquis of Worcester, published a curious collection of descriptions of his inventions, couched in obscure and singular language, and called "A Century of the Names and Scantlings of Inventions by me already Practised."

One of these inventions is an apparatus for raising water by steam. The description was not accompanied by a drawing, but the sketch here given is thought probably to resemble one of his earlier contrivances very closely.

"Anecdotes of the Steam-Engine," vol. i., p. 61.

THOMAS SAVERY was a member of a well-known family of Devonshire, England, and was born at Shilston, about 1650. He was well educated, and became a military engineer. He exhibited great fondness for mechanics, and for mathematics and natural philosophy, and gave much time to experimenting, to the contriving of various kinds of apparatus, and to invention. He constructed a clock, which still remains in the family, and is considered an ingenious piece of mechanism, and is said to be of excellent workmanship.

He invented and patented an arrangement of paddle-wheels, driven by a capstan for propelling vessels in calm weather, and spent some time endeavoring to secure its adoption by the British Admiralty and the Navy Board, but met with no success. The principal objector was the Surveyor of the Navy, who dismissed Savery, with a remark which illustrates a spirit which, although not yet extinct, is less frequently met with in the public service now than then: "What have interloping people, that have no concern with us, to do to pretend to contrive or invent things for us?" Savery then fitted his apparatus into a small vessel, and exhibited its operation on the Thames. The invention was never introduced into the navy, however.

Harris, "Lexicon Technicum," London, 1710.

It was after this time that Savery became the inventor of a steam-engine. It is not known whether he was familiar with the work of Worcester, and of earlier inventors. Desaguliers states that he had read the book of Worcester, and that he subsequently endeavored to destroy all evidence of the anticipation of his own invention by the marquis by buying up all copies of the century that he could find, and burning them. The story is scarcely credible. A comparison of the drawings given of the two engines exhibits, nevertheless, a striking resemblance; and, assuming that of the marquis's engine to be correct, Savery is to be given credit for the finally successful introduction of the "semi-omnipotent" "water-commanding" engine of Worcester.

"Experimental Philosophy," vol. ii., p. 465.

The most important advance in actual construction, therefore, was made by Thomas Savery. The constant and embarrassing expense, and the engineering difficulties presented by the necessity of keeping the British mines, and particularly the deep pits of Cornwall, free from water, and the failure of every attempt previously made to provide effective and economical pumping-machinery, were noted by Savery, who, July 25, 1698, patented the design of the first engine which was ever actually employed in this work. A working-model was submitted to the Royal Society of London in 1699, and successful experiments were made with it. Savery spent a considerable time in planning his engine and in perfecting it, and states that he expended large sums of money upon it.

"Philosophical Transactions, No. 252." Weld's "Royal Society," vol. i., p. 357. Lowthorp's "Abridgment," vol. i.

Bradley, "New Improvements of Planting and Gardening." Switzer, "Hydrostatics," 1729.

The Kensington engine cost ?50, and raised 3,000 gallons per hour, filling the receiver four times a minute, and required a bushel of coal per day. Switzer remarks: "It must be noted that this engine is but a small one in comparison with many others that are made for coal-works; but this is sufficient for any reasonable family, and other uses required of it in watering all middling gardens." He cautions the operator: "When you have raised water enough, and you design to leave off working the engine, take away all the fire from under the boiler, and open the cock to let out the steam, which would otherwise, were it to remain confined, perhaps burst the engine."

With the intention of making his invention more generally known, and hoping to introduce it as a pumping-engine in the mining districts of Cornwall, Savery wrote a prospectus for general circulation, which contains the earliest account of the later and more effective form of engine. He entitled his pamphlet "The Miner's Friend; or, A Description of an Engine to raise Water by Fire described, and the Manner of fixing it in Mines, with an Account of the several Uses it is applicable to, and an Answer to the Objections against it." It was printed in London in 1702, for S. Crouch, and was distributed among the proprietors and managers of mines, who were then finding the flow of water at depths so great as, in some cases, to bar further progress. In many cases, the cost of drainage left no satisfactory margin of profit. In one mine, 500 horses were employed raising water, by the then usual method of using horse-gins and buckets.

The approval of the King and of the Royal Society, and the countenance of the mine-adventurers of England, were acknowledged by the author, who addressed his pamphlet to them.

The engraving of the engine was reproduced, with the description, in Harris's "Lexicon Technicum," 1704; in Switzer's "Hydrostatics," 1729; and in Desaguliers's "Experimental Philosophy," 1744.

The sketch which here follows is a neater engraving of the same machine. Savery's engine is shown in Fig. 13, as described by Savery himself, in 1702, in "The Miner's Friend."

The two vessels are thus alternately charged and discharged, as long as is necessary.

Savery's method of supplying his boiler with water was at once simple and ingenious.

Here we find, therefore, the first really practicable and commercially valuable steam-engine. Thomas Savery is entitled to the credit of having been the first to introduce a machine in which the power of heat, acting through the medium of steam, was rendered generally useful.

It will be noticed that Savery, like the Marquis of Worcester, used a boiler separate from the water-reservoir.

The machine was thus made capable of working uninterruptedly for a period of time only limited by its own decay.

Savery never fitted his boilers with safety-valves, although it was done earlier by Papin; and in deep mines he was compelled to make use of higher pressures than his rudely-constructed boilers could safely bear.

Add to tbrJar First Page Next Page Prev Page

 

Back to top