bell notificationshomepageloginedit profileclubsdmBox

Read this ebook for free! No credit card needed, absolutely nothing to pay.

Words: 16378 in 3 pages

This is an ebook sharing website. You can read the uploaded ebooks for free here. No credit cards needed, nothing to pay. If you want to own a digital copy of the ebook, or want to read offline with your favorite ebook-reader, then you can choose to buy and download the ebook.

10% popularity   0 Reactions

if the sea together with the earth formed one solid mass. But although these circumstances be inefficient, a variation in the mean temperature would certainly occasion a corresponding change in the velocity of rotation: for in the science of dynamics, it is a principle in a system of bodies, or of particles revolving about a fixed centre, that the momentum, or sum of the products of the mass of each into its angular velocity and distance from the centre is a constant quantity, if the system be not deranged by an external cause. Now since the number of particles in the system is the same whatever its temperature may be, when their distances from the centre are diminished, their angular velocity must be increased in order that the preceding quantity may still remain constant. It follows then, that as the primitive momentum of rotation with which the earth was projected into space must necessarily remain the same, the smallest decrease in heat, by contracting the terrestrial spheroid, would accelerate its rotation, and consequently diminish the length of the day. Notwithstanding the constant accession of heat from the sun's rays, geologists have been induced to believe from the nature of fossil remains, that the mean temperature of the globe is decreasing.

The relative quantity of heat received by the earth at different moments during a single revolution, varies with the position of the perigee of its orbit, which accomplishes a tropical revolution in 20935 years. In the year 1250 of our era, and 29653 years before it, the perigee coincided with the summer solstice; at both these periods the earth was nearer the sun during the summer, and farther from him in the winter than in any other position of the apsides: the extremes of temperature must therefore have been greater than at present; but as the terrestrial orbit was probably more elliptical at the distant epoch, the heat of the summers must have been very great though possibly compensated by the rigour of the winters; at all events, none of these changes affect the length of the day.

It appears from the marine shells found on the tops of the highest mountains, and in almost every part of the globe, that immense continents have been elevated above the ocean, which must have which must have engulphed others. Such a catastrophe would be occasioned by a variation in the position of the axis of rotation on the surface of the earth; for the seas ending to the new equator would leave some portions of the globe, and overwhelm others.

But theory proves that neither nutation, precession, nor any of the disturbing forces that affect the system, have the smallest influence on the axis of rotation, which maintains a permanent position on the surface, if the earth be not disturbed in its rotation by some foreign cause, as the collision of a comet which may have happened in the immensity of time. Then indeed, the equilibrium could only have been restored by the rushing of the seas to the new equator, which they would continue to do, till the surface was every where perpendicular to the direction of gravity. But it is probable that such an accumulation of the waters would not be sufficient to restore equilibrium if the derangement had been great; for the mean density of the sea is only about a fifth part of the mean density of the earth, and the mean depth even of the Pacific ocean is not more than four miles, whereas the equatorial radius of the earth exceeds the polar radius by twenty-five or thirty miles; consequently the influence of the sea on the direction of gravity is very small; and as it appears that a great change in the position of the axes is incompatible with the law of equilibrium, the geological phenomena must be ascribed to an internal cause. Thus amidst the mighty revolutions which have swept innumerable races of organized beings from the earth, which have elevated plains, and buried mountains in the ocean, the rotation of the earth, and the position of the axis on its surface, have undergone but slight variations.

It is beyond a doubt that the strata increase in density from the surface of the earth to its centre, which is even proved by the lunar inequalities; and it is manifest from the mensuration of arcs of the meridian and the lengths of the seconds pendulum that the strata are elliptical and concentric. This certainly would have happened if the earth had originally been fluid, for the denser parts must have subsided towards the centre, as it approached a state of equilibrium; but the enormous pressure of the superincumbent mass is a sufficient cause for these phenomena. Professor Leslie observes, that air compressed into the fiftieth part of its volume has its elasticity fifty times augmented; if it continue to contract at that rate, it would, from its own incumbent weight, acquire the density of water at the depth of thirty-four miles. But water itself would have its density doubled at the depth of ninety-three miles, and would even attain the density of quicksilver at a depth of 362 miles. In descending therefore towards the centre through 4000 miles, the condensation of ordinary materials would surpass the utmost powers of conception. But a density so extreme is not borne out by astronomical observation. It might seem therefore to follow, that our planet must have a widely cavernous structure, and that we tread on a crust or shell, whose thickness bears a very small proportion to the diameter of its sphere. Possibly too this great condensation at the central regions may be counterbalanced by the increased elasticity due to a very elevated temperature. Dr. Young says that steel would be compressed into one-fourth, and stone into one-eighth of its bulk at the earth's centre. However we are yet ignorant of the laws of compression of solid bodies beyond a certain limit; but, from the experiments of Mr. Perkins, they appear to be capable of a greater degree of compression than has generally been imagined.

It appears then, that the axis of rotation is invariable on the surface of the earth, and observation shows, that were it not for the action of the sun and moon on the matter at the equator, it would remain parallel to itself in every point of its orbit.

The attraction of an exterior body not only draws a spheroid towards it; but, as the force varies inversely as the square of the distance, it gives it a motion about its centre of gravity, unless when the attracting body is situated in the prolongation of one of the axes of the spheroid.

The mean annual precession is subject to a secular variation; for although the change in the plane of the ecliptic which is the orbit of the sun, be independent of the form of the earth, yet by bringing the sun, moon and earth into different relative positions from age to age, it alters the direct action of the two first on the prominent matter at the equator; on this account the motion of the equinox is greater by 0"?455 now than it was in the lime of Hipparchus; consequently the actual length of the tropical year is about 4"?154 shorter than it was at that time. The utmost change that it can experience from this cause amounts to 43".

Such is the secular motion of the equinoxes, but it is sometimes increased and sometimes diminished by periodic variations, whose periods depend on the relative positions of the sun and moon with regard to the earth, and occasioned by the direct action of these bodies on the equator. Dr. Bradley discovered that by this action the moon causes the pole of the equator to describe a small ellipse in the heavens, the diameters of which are 16" and 20". The period of this inequality is nineteen years, the time employed by the nodes of the lunar orbit to accomplish a revolution. The sun causes a small variation in the description of this ellipse; it runs through its period in half a year. This nutation in the earth's axis affects both the precession and obliquity with small periodic variations; but in consequence of the secular variation in the position of the terrestrial orbit, which is chiefly owing to the disturbing energy of Jupiter on the earth, the oblique of the ecliptic is annually diminished by 0"?52109. With regard to the fixed stars, this variation in the course of ages may amount to tea or eleven degrees; but the obliquity of the ecliptic to the equator can never vary more than two or three degrees, since the equator will follow in some measure the motion of the ecliptic.

It is evident that the places of all the celestial bodies are affected by precession and nutation, and therefore all observations of them must be corrected for these inequalities.

The densities of bodies are proportional to their masses divided by their volumes; hence if the sun and planets be assumed to be spheres, their volumes will be as the cubes of their diameters. Now the apparent diameters of the sun and earth at their mean distance, are 1922" and 17"?08, and the mass of the earth is the 1/354936th part of that of the sun taken as the unit; it follows therefore, that the earth is nearly four times as dense as the sun; but the sun is so large that his attractive force would cause bodies to fall through about 450 feet in a second; consequently if he were even habitable by human beings, they would be unable to move, since their weight would be thirty times as great as it is here. A moderate sized man would weigh about two tons at the surface of the sun. On the contrary, at the surface of the four new planets we should be so light, that it would be impossible to stand from the excess of our muscular force, for a man would only weigh a few pounds. All the planets and satellites appear to be of less density than the earth. The motions of Jupiter's satellites show that his density increases towards his centre; and the singular irregularities in the form of Saturn, and the great compression of Mars, prove the internal structure of these two planets to be very far from uniform.

The returns of the sun to the same meridian, and to the same equinox or solstice, have been universally adopted as the measure of our civil days and years. The solar or astronomical day is the time that elapses between two consecutive noons or midnights; it is consequently longer than the sidereal day, on account of the proper motion of the sun during a revolution of the celestial sphere; but as the sun moves with greater rapidity at the winter than at the summer solstice, the astronomical day is more nearly equal to the sidereal day in summer than in winter. The obliquity of the ecliptic also affects its duration, for in the equinoxes the arc of the equator is less than the corresponding arc of the ecliptic, and in the solstices it is greater. The astronomical day is therefore diminished in the first case, and increased in the second. If the sun moved uniformly in the equator at the rate of 59' 8"?3 every day, the solar days would be all equal; the time therefore, which is reckoned by the arrival of an imaginary sun at the meridian, or of one which is supposed to move in the equator, is denominated mean solar time, such as is given by clocks and watches in common life: when it is reckoned by the arrival of the real sun at the meridian, it is apparent time, such as is given by dials. The difference between the time shown by a clock and a dial is the equation of time given in the Nautical Almanac, and sometimes amounts to as much as sixteen minutes. The apparent and mean time coincide four times in the year.


Free books android app tbrJar TBR JAR Read Free books online gutenberg


Load Full (0)

Login to follow story

More posts by @FreeBooks

0 Comments

Sorted by latest first Latest Oldest Best

 

Back to top